Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{6}+\sqrt{12}+\sqrt{30}+\sqrt{56}\)
\(B^2=\left(\sqrt{6}+\sqrt{30}\right)^2=36+2\sqrt{180}>36+26=62\)
B>7;\(\sqrt{30}>5;\sqrt{56}>7\)
A>7+5+7=19
A>19
\(\sqrt{27}-\sqrt{12}-\sqrt{2016}>\sqrt{25}-\sqrt{16}-\sqrt{2025}\)
\(=5-4-45=-44\)
Vậy \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)
Có : \(\sqrt{12}< \sqrt{16}=4\)
\(\sqrt{2016}< \sqrt{2025}\) => \(\sqrt{12}+\sqrt{2016}< 4+45\)
=> \(-\sqrt{12}-\sqrt{2016}>-49\)(1)
Lại có : \(\sqrt{27}>\sqrt{25}=5\)(2)
Từ (1),(2) có : \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>5-49\)or \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)
Bình 2 phương \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\) đc
\(\sqrt{\left(40+2\right)^2}=42\)
\(\left(\sqrt{40}+\sqrt{2}\right)^2=40+2+2\sqrt{40\cdot2}=42+2\sqrt{80}\)
Ta thấy:\(42+2\sqrt{80}>42\)
\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)
19 bé hơn
19 lớn hơn hoặc bằng