K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

\(Q=\dfrac{\left[\left(x+3\right)\left(x+9\right)\right]\left[\left(x+5\right)\left(x+7\right)\right]+2014}{\left(x^2+12x+32\right)}\)

\(Q=\dfrac{\left(x^2+12x+27\right)\left(x^2+12x+35\right)+2014}{\left(x^2+12x+32\right)}\)

\(Q=\dfrac{\left(t-5\right)\left(t+3\right)+2014}{t}\)

\(Q=\dfrac{\left(t^2-2t-15\right)+2014}{t}=t-2+\dfrac{1999}{t}\)

Kết luận số dư là 1999

a) xy

b)x+y +5xy

4 tháng 1 2023

Xét f(x) là hằng số thì \(f\left(x\right)\equiv0\).

Xét f(x) khác hằng.

Ta có \(a^2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}+2\Rightarrow a^2-2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}\)

\(\Rightarrow\left(a^2-2\right)^2=\dfrac{3}{4}+\dfrac{4}{3}+2=\dfrac{49}{12}\Rightarrow a^4-4a^2-\dfrac{1}{12}=0 \).

Bằng cách đồng nhất hệ số, dễ dàng chứng minh được đa thức \(P\left(x\right)=x^4-4x^2-\dfrac{1}{12}\) bất khả quy trên \(\mathbb{Q}[x]\).

Do đó ta có P(x) là đa thức tối tiểu của a, tức mọi đa thức hệ số hữu tỉ khác nhận a là nghiệm đều chia hết cho P(x).

Vì f(x) là đa thức hệ số nguyên nên \(f\left(x\right)\) chia hết cho \(12P\left(x\right)=12x^4-48x^2-1\).

Vậy \(f\left(x\right)=K\left(x\right)\left(12x^4-48x^2-1\right)\), với \(K\in\mathbb Z[x]\) bất kì.

\(\dfrac{x^{n-1}-3x^2}{2x^2}=\dfrac{1}{2}x^{n-3}-\dfrac{3}{2}\)

Để đây là phép chia hết thì n-3>=0

hay n>=3

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta có:

\(\begin{array}{l}y =  - 0,00188{\left( {x - 251,5} \right)^2} + 118\\y =  - 0,00188.\left( {{x^2} - 503x + 63252,25} \right) + 118\\y =  - 0,00188{x^2} + 0,94564x - 118,91423 + 118\\y =  - 0,00188{x^2} + 0,94564x - 0,91423\end{array}\)

b) Bậc của đa thức là 2

c) Hệ số của \({x^2}\) là -0,00188

Hệ số của x là 0,94564

Hệ số tự do là -0,91423