K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

undefinedundefined

4 tháng 10 2018

Khảo sát hàm số Giải bài 11 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

- TXĐ: D = R \ {-1}

- Sự biến thiên:

+ Chiều biến thiên:

Giải bài 11 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Hàm số nghịch biến trên các khoảng (-∞; -1) và (-1; +∞).

+ Cực trị: Hàm số không có cực trị.

+ Tiệm cận:

Giải bài 11 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = -1 là tiệm cận đứng của đồ thị hàm số.

Giải bài 11 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

⇒ y = 3 là tiệm cận đứng của đồ thị hàm số.

+ Bảng biến thiên:

Giải bài 11 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

+ Giao với Ox: (-3; 0)

+ Giao với Oy: (0; 3)

+ Đồ thị hàm số nhận (-1; 1) là tâm đối xứng.

Giải bài 11 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

7 tháng 3 2018

a)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Tịnh tiến (C) song song với trục Ox sang trái 1 đơn vị, ta được đồ thị (C1) của hàm số.

y = f(x) = − ( x + 1 ) 3  + 3(x + 1) + 1 hay f(x) = − ( x + 1 ) 3  + 3x + 4 (C1)

Lấy đối xứng (C1) qua trục Ox, ta được đồ thị (C’) của hàm số y = g(x) =  ( x + 1 ) 3  − 3x – 4


c) Ta có:  ( x + 1 ) 3  = 3x + m (1)

⇔  ( x + 1 ) 3  − 3x – 4 = m – 4

Số nghiệm của phương trình (1) là số giao điểm của hai đường :

y = g(x) =  ( x + 1 ) 3  − 3x – 4 (C’) và y = m – 4 (d1)

Từ đồ thị, ta suy ra:

    +) m > 5 hoặc m < 1: phương trình (1) có một nghiệm.

    +) m = 5 hoặc m = 1 : phương trình (1) có hai nghiệm.

    +) 1 < m < 5 , phương trình (1) có ba nghiệm.

d) Vì (d) vuông góc với đường thẳng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có hệ số góc bằng 9.

Ta có: g′(x) = 3 ( x + 1 ) 2  – 3

g′(x) = 9 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Có hai tiếp tuyến phải tìm là:

y – 1 = 9(x – 1) ⇔ y = 9x – 8;

y + 3 = 9(x + 3) ⇔ y = 9x + 24.

22 tháng 3 2017

Tập xác định: R\{0}

Hàm số đã cho là hàm số lẻ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: y′ < 0, ∀ x ∈ R \ {0} nên hàm số luôn nghịch biến trên các khoảng xác định.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

3 tháng 11 2018

Với a = 0 ta có hàm số Giải bài 2 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

- Tập xác định : D = R.

- Sự biến thiên :

y’ = -x2 – 2x + 3 ;

y’ = 0 ⇔ x = -3 hoặc x = 1.

QUẢNG CÁO

Bảng biến thiên :

Giải bài 2 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận :

Hàm số đồng biến trên (-3 ; 1)

Hàm số nghịch biến trên (-∞; -3) và (1; +∞).

Hàm số đạt cực đại tại x = 1 ; Giải bài 2 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số đạt cực tiểu tại x = -3 ; yCT = -13.

- Đồ thị hàm số :

Giải bài 2 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

27 tháng 4 2017

a) Hàm số y=

Tập xác định: (0; +∞).

Sự biến thiên: > 0, ∀x ∈ (0; +∞) nên hàm số luôn luôn đồng biến.

Giới hạn đặc biệt: = 0, = +∞, đồ thị hàm số có tiệm cận.

Bảng biến thiên

Đồ thị( hình bên). Đồ thị hàm số qua (1;1), (2;).

b) y= .

Tập xác định: ℝ \{0}.

Sự biến thiên: < 0, ∀xj# 0, hàm nghich biến trong hai khoảng (-∞;0) và (0; +∞).

Giới hạn đặc biệt:= +∞, = -∞, = 0, = 0; đồ thị hàm số nhận trục tung làm tiệm cận đứng, trục hoành làm tiệm cận ngang.

Bảng biến thiên

Đồ thị ( hình dưới). Đồ thị qua (-1;-1), (1;1), (2; ), ( -2; ). Hàm số đồ thị đã cho là hàm số lẻ nên đối xứng qua gốc tọ độ.



5 tháng 11 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit