Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x^3-y^2\right)^3\)
\(=\left(2x^3\right)^3-3\cdot\left(2x^3\right)^2\cdot y^2+3\cdot2x^3\cdot\left(y^2\right)^{^2}-\left(y^2\right)^3\)
\(=8x^9-3\cdot4x^6y^2+3\cdot2x^3y^4-y^6\)
\(=8x^9-12x^6y^2+6x^3y^4-y^6\)
b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(x+2y+z\right)\left(x+2y-z\right)\)
\(=\left(x+2y\right)^2-z^2\)
\(=x^2+4xy+4y^2-z^2\)
d) \(\left(2x^3y-0,5x^2\right)^3\)
\(=\left(2x^3y-\dfrac{1}{2}x^2\right)^3\)
\(=8x^9y^3-6x^8y^2+\dfrac{3}{2}x^7y-\dfrac{1}{8}x^6\)
e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)
\(=\left(x^2-3\right)\left(4x^2+9\right)\)
\(=4x^4+9x^2-12x^2-27\)
\(=4x^4-3x^2-27\)
f) \(\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=\left(2x\right)^3-1^3\)
\(=8x^3-1\)
\(a,\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)\(b,\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)
\(c,\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)\(d,\left(2x^3y-0,5x^2\right)^3=8x^9y^3-6x^4y^2x^2+3x^3yx^4-0,125x^6=8x^9y^3-6x^6y^2+3x^7y-0,125x^6\)
a) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)
b) \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)
c) \(\left(-6x-\frac{2}{5}\right)^2=36x^2+\frac{24}{5}x+\frac{4}{25}\)
d) \(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)
e) \(\left(x-y\right)^2\left(x+y\right)^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)
f) \(\left(\frac{1}{2}x-\frac{1}{3}y-1\right)^2=\frac{1}{4}x^2+\frac{1}{9}y^2+1-\frac{1}{3}xy-x+\frac{2}{3}y\)
Gọi diện tích hình vuông là Shv.Khi đó mỗi ô vuông nhỏ có diện tích là Shv9 . Ta thấy ngay diện tích tam giác ABK bằng một nửa diện tích hình chữ nhật AKBH và bằng Shv9 .
Tương tự SAID=SDNC=SBMC=SABK=Shv9 và SIKMN=Shv9
Vậy thì SABCD=4.Shv9 +Shv9 =59 Shv
Vậy diện tích phần còn lại bằng 49 Shv
Suy ra diện tích hình vuông ABCD bằng 54 diện tích phần còn lại.
k mình nha
a. \(\left(2+xy\right)^2=x^2y^2+4xy+4\)
b. \(\left(5-x^2\right)\left(5+x^2\right)=25+5x^2-5x^2-x^4=-x^4+25\)
c. \(\left(2x-y\right)\left(4x^2+2xy+y^2\right)=8x^3+4x^2y+2xy^2-4x^2y-2xy^2-y^3\)
\(=8x^3-y^3\)
d. \(\left(5-3x\right)^2=25-30x+9x^2\)
e. \(\left(5x-1\right)^3=125x^3-75x^3+15x-1\)
f. \(\left(x+3\right)\left(x^2-3x+9\right)=x^3-3x^2+9x+3x^2-9x+27=x^3+27\)
h. \(\left(2x^2+3y\right)^2=4x^4+12x^2y+9y^2\)
a) (2+xy)2 = 22+4xy+(xy)2 = 4 + 4xy +x2y2
b) ( 5 - x^2 ) . ( 5 + x^2 ) = 52-x4=25-x4
c) ( 2x - y ) . ( 4x^2 + 2xy + y^2 ) = 8x3-y3
d)(5-3x)2=52-2.5.3x+9x2=25-30x+9x2
e) (5x-1)3=(5x)3-3.(5x)2.1+3.5x.1-1 =125x3-75x2+15x-1
f) (x+3)(x2-3x+9)=(x+3)(x2-3x+32)=x3+27
g) -x3+3x2-3x+1 =(−x+1)(x−1)(x−1)= -(x-1)3
h) (2x2+3y)2=4x4+2.2x2.3y+9y2=4x4+12x2y+9y2
a, -x - y2 + x2 - y = (x2 - y2) - (x + y)
= (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
b, x( x + y ) - 5x - 5y = x(x + y) - 5(x + y)
= (x - 5)(x + y)
c, x2 - 5x + 5y - y2 = (x - y)(x + y) - 5(x - y)
= (x - y)(x + y - 5)
d, 5x3 - 5x2y - 10x2 + 10xy = 5x2(x - y) - 10x(x - y)
= 5x(x - y)(x - 2)
e, 27x3 - 8y3 = (3x - 2y)(9x2 + 6xy + 4y2)
f, x2 - y2 - x - y = (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
g, x2 - y2 - 2xy + y2 = (x2 - 2xy + y2) - y2
= (x - y)2 - y2
= (x - y - y)(x - y + y) = x(x - 2y)
h, x2 - y2 + 4 - 4x = (x2 - 4x + 4) - y2
= (x - 2)2 - y2
= (x - y - 2)(x + y - 2)
i, x3 + 3x2 + 3x + 1 - 27z3 = (x + 1)3 - 27z3
= (x+1-3z)(x2+2x+1+3xz+3z+9z2)
k, 4x2 + 4x - 9y2 + 1 = (2x + 1)2 - 9y2
= (2x - 3y + 1)(2x + 3y + 1)
m, x2 - 3x + xy - 3y = x(x - 3) + y(x - 3)
= (x - 3)(x + y)
a) \(x^2+4x+4=\left(x+2\right)^2\)
b) \(9x^2-12x+4=\left(3x-2\right)^2\)
c) \(x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2\)
d) kiểm tra lại đề nhé
e) \(4y^2-9x^2=\left(2x-3x\right)\left(2x+3x\right)\)
f) \(9y^2-\frac{1}{4}=\left(3y-\frac{1}{2}\right)\left(3y+\frac{1}{2}\right)\)
g) \(8x^3+8a^3=\left(2x+2a\right)\left(4x^2-4ax+4a^2\right)\)
h) \(64x^3-27y^3=\left(4x-3y\right)\left(9y^2+12xy+16x^2\right)\)
a) \(x^2-81=\left(x-9\right)\left(x+9\right)\)
b) \(4x^2-25=\left(2x-5\right)\left(2x+5\right)\)
c) \(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
d) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
e) \(6x-9-x^2=-\left(x^2-6x+9\right)=-\left(x-3\right)^2\)
f) \(x^2-4x^2+4y^2+4xy=\left(x^2+4xy+4y^2\right)-4x^2=\left(x+2y\right)^2-4x^2\\ =\left(x+2y+2x\right)\left(x+2y-2x\right)=\left(3x+2y\right)\left(2y-x\right)\)
g) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)=2a\left(a^2+3b^2\right)\)
h) \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\\ =\left(4x+2\right)\cdot2x=4x\left(2x+1\right)\)
a, (x+y)2 = x2 + 2xy + y2
b, ( x-4y)2= x2 -8xy2 + 16y2
c, \(\left(3x+\frac{1}{3}\right)^2=9x^2+2xy+\frac{1}{9}\)
d,\(4x^2-81=\left(2x-9\right)\left(2x+9\right)\)
e,\(\left(xy+5\right)^2=x^2y^2+10xy+25\)
f,\(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)
g,\(1-9y^2=\left(1-3y\right)\left(1+3y\right)\)
h,\(\left(m-\frac{2}{3}n\right)^2=m^2-\frac{4}{3}mn+\frac{4}{9}n^2\)