K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}\right)=\dfrac{1}{2}\cdot\dfrac{2008}{2009}=\dfrac{1004}{2009}\)

17 tháng 6 2017

A nhé bn 

17 tháng 6 2017

vậy kết quả là gì vậy giúp mình nha

30 tháng 4 2019

1/1*3 + 1/3*5 + 1/5*7 + ... + 1/2007*2009

= 1/2(2/1*3 + 2/3*5 + 2/5*7 + ... + 2/2007*2009)

= 1/2(1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2007 - 1/2009)

= 1/2( 1- 1/2009)

= 1/2 * 2008/2009

= 1009/2009

30 tháng 4 2019

#)Giải :

Gọi A = 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/2007.2009

      A = 1/2 . ( 1/1 - 1/3 + 1/3 - 1/5 + ... + 1/2007 - 1/2009

      A = 1/2 . ( 1/1 - 1/2009 )

      A = 1/2 . 2008/2009

      A = 1004/2009

#)Chúc bn học tốt :D

I: Để 3n+4/n+2 là số nguyên thì \(3n+4⋮n+2\)

\(\Leftrightarrow3n+6-2⋮n+2\)

\(\Leftrightarrow n+2\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{-1;-3;0;-4\right\}\)

II: \(D=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}\right)\)

\(D=2\cdot\left(1-\dfrac{1}{2009}\right)=2\cdot\dfrac{2008}{2009}=\dfrac{4016}{2009}\)

23 tháng 4 2019

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{99}\right)\)

\(A=\frac{1}{2}.\frac{98}{99}\)

\(A=\frac{49}{99}\)

23 tháng 4 2019

\(A=\frac{1}{1\cdot3} +\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{95\cdot97}+\frac{1}{97\cdot99}\)

\(2A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{95\cdot97}+\frac{2}{97\cdot99}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)

\(2A=1-\frac{1}{99}\)

\(2A=\frac{98}{99}\)

\(A=\frac{98}{99}\text{ : }2\)

\(A=\frac{98}{99}\cdot\frac{1}{2}\)

\(A=\frac{49}{99}\)

còn cần không bạn, mk làm cho

13 tháng 2 2022

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\left(\dfrac{100}{101}\right)=\dfrac{50}{101}\)

\(A=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}\)

3 tháng 3 2016

= 1/2. ( 1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +........+ 1/2013 - 1/2015)

= 1/2 . ( 1- 1/2015)

= 1007/2015