Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3-2}{2\times3}+\frac{5-3}{3\times5}+\frac{8-5}{5\times8}+...\frac{38-30}{30\times38}+\frac{47-38}{38\times47}\)
\(A=\frac{3}{2\times3}-\frac{2}{2\times3}+\frac{5}{3\times5}-\frac{3}{3\times5}+...\frac{38}{30\times38}-\frac{30}{30\times38}+\frac{47}{38\times47}-\frac{38}{38\times47}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}+...+\frac{1}{30}-\frac{1}{38}+\frac{1}{38}-\frac{1}{47}\)
\(A=\frac{1}{2}-\frac{1}{47}=\frac{47}{94}-\frac{2}{94}=\frac{45}{94}\)
Lời giải:
Tổng 10 phân số đầu tiên là:
$\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}+\frac{5}{204}+.....+\frac{10}{2679}$
$=\frac{1}{2.3}+\frac{2}{3.5}+\frac{3}{5.8}+\frac{5}{8.12}+\frac{5}{12.17}+\frac{6}{17.23}+\frac{7}{23.30}+\frac{8}{30.38}+\frac{9}{38.47}+\frac{10}{47.57}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{47}-\frac{1}{57}$
$=\frac{1}{2}-\frac{1}{57}=\frac{55}{114}$
\(\frac{1010+1111+1212+1313+1414+1515+1616+1717}{2020+2121+2222+2323+2424+2525+2626+2727}\)
\(=\frac{101.10+101.11+...+101.17}{101.20+101.21+...+101.27}\)
\(=\frac{101.\left(10+11+...+17\right)}{101.\left(20+21+...+27\right)}\)
\(=\frac{108}{188}\)
\(=\frac{27}{47}\)
\(2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right)\cdot5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{20}{120}+\frac{16}{120}+\frac{9}{120}+\frac{5}{120}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{5}{12}:5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{1}{12}.y>\frac{5}{6}\)
Đặt :\(\frac{1}{12}.y=2\Rightarrow y=2:\frac{1}{12}=24\)
\(\frac{1}{12}.y=\frac{5}{6}\Rightarrow y=\frac{5}{6}:\frac{1}{12}=10\)
\(\Rightarrow24>y>10\)
\(\Rightarrow y\in\left\{11;12;...;23\right\}\)
Ta có:
\(A=\left(x-\frac{1}{2}\right).\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\frac{9}{10}=\frac{1}{3}\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}.\frac{10}{9}\Leftrightarrow x=\frac{47}{54}\)
\(B=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{96.101}=\frac{1}{10.x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\right)=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\Leftrightarrow B=\frac{1}{5}.\frac{100}{101}=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{x}=\frac{1}{10}-\frac{20}{101}=-\frac{99}{1010}\Leftrightarrow x=-\frac{1010}{99}\)
c) Sai đề nhé bạn vì không có kết quả nên không tìm được x.
d) \(\left(x-5\right).\left(10-9\frac{40}{41}\right):\left(1-\frac{81}{82}\right):\left(1-\frac{204}{205}\right)=2050\)
\(\Rightarrow\left(x-5\right).\frac{1}{41}.82.205=2050\)
\(\Rightarrow\left(x-5\right).2.205=2050\Leftrightarrow x-5=2050:410=5\Leftrightarrow x=10\)
\(\frac{23}{12}\)
\(\frac{314}{105}\)
\(\frac{59}{60}\)
\(\frac{199}{90}\)
\(\frac{1}{18}\)
\(\frac{13}{36}\)
\(\frac{4}{221}\)
\(\frac{4}{85}\)
(x-1/2)*5/3=7/4-1/2
(x-1/2)*5/3=5/4
x-1/2=3/4
x = 5/4
(x+4/3)*7/4=5-7/6
(x+4/3)*7/4=23/6
x+4/3 = 46/21
x = 6/7
6/8=15/x
6*x=15*8
6*x=120
x = 20
\(\frac{6}{8}=\frac{15}{x}\)
\(\Rightarrow x=\left(15\cdot8\right):6\)
\(\Rightarrow x=20\)
mn đừng trả lời nhé
tại sao không