K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HH
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TT
8 tháng 2 2020
Ta có : \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
\(\Rightarrow a^2c+b^2c-ab^2-ac^2=0\)
\(\Rightarrow a\left(ac-b^2\right)-c\left(ac-b^2\right)=0\)
\(\Rightarrow\left(a-c\right)\left(ac-b^2\right)=0\)
\(\Rightarrow ac=b^2\) ( do \(a\ne c\) )
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{c}{b}=\frac{b}{a}=\frac{a}{c}\)
\(\Rightarrow\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)