Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn trả lời:
a) Xét hai tam giác vuông AOC và BDO ta có: ˆA=ˆB=900A^=B^=900
ˆAOC=ˆBDOAOC^=BDO^ (hai góc có cạnh tương ứng vuông góc).
Vậy ∆AOC ~ ∆BDO
⇒ACAO=BOBDhayACa=bBD⇒ACAO=BOBDhayACa=bBD (1)
Vậy AC . BD = a . b = không đổi.
b) Khi thì tam giác AOC trở thành nửa tam giác đều cạnh là OC, chiều cao AC.
⇒OC=2AO=2a⇔AC=OC√32=a√3⇒OC=2AO=2a⇔AC=OC32=a3
Thay AC = a√3 vào (1), ta có:
ACa=bBD=a√3.BD=a.b⇒BD=aba√3=b√33ACa=bBD=a3.BD=a.b⇒BD=aba3=b33
Ta có công thức tính diện tích hình thang ABCD là:
S=AC+BD2.AB=a√3+b√332.(a+b)=√36(3a2+4ab+b2)(cm2)S=AC+BD2.AB=a3+b332.(a+b)=36(3a2+4ab+b2)(cm2)
c) Theo đề bài ta có:
∆AOC tạo nên hình nón có bán kính đáy là AC = a√3 và chiều cao là AO = a.
∆BOD tạo nên hình nón có bán kính đáy là BD=b√33BD=b33 và chiều cao OB = b
Ta có: V1V2=13π.AC2.AO13π.BD2.OB=AC2.AOBD2.OB=(a√3)2.a(b√33)2.b=3a3b33=9a3b3V1V2=13π.AC2.AO13π.BD2.OB=AC2.AOBD2.OB=(a3)2.a(b33)2.b=3a3b33=9a3b3
Vậy V1V2=9a3b3
Câu 1:
G/s \(\sqrt{7}\) là số hữu tỉ có thể viết dưới dạng phân số tối giản \(\frac{a}{b}\) \(\left(a,b\inℤ\right)\)
=> \(\frac{a}{b}=\sqrt{7}\)
<=> \(\left(\frac{a}{b}\right)^2=7\)
=> \(a^2=7b^2\)
=> \(a^2⋮b^2\) , mà theo đề bài phân số tối giản
=> a không chia hết cho b => a2 không chia hết cho b2
=> vô lý
=> \(\sqrt{7}\) là số vô tỉ
Câu 2:
a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=\left(a^2c^2+a^2d^2\right)+\left(b^2c^2+b^2d^2\right)\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) Ta có: \(\left(ac+bd\right)^2=a^2c^2+2abcd+b^2d^2\)
\(=a^2c^2+2\sqrt{a^2d^2.b^2c^2}+b^2d^2\)
\(\le a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\) ( bất đẳng thức Cauchy )
Dấu "=" xảy ra khi: \(ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)