Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện:
\(x-1\ne0\Rightarrow x\ne1\)
\(x^3+x\ne0\Leftrightarrow x\ne0\)
ta có : \(m=x^2-x+1=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi \(x\)
\(\Rightarrow\) giá trị nhỏ nhất của \(m=x^2-x+1\) là \(\dfrac{3}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
vậy giá trị nhỏ nhất của \(m=x^2-x+1\) là \(\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
Câu 1)\(H=\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
\(\Leftrightarrow H=\left(x-y+z+z-y\right)^2\)
\(\Leftrightarrow H=\left(x-2y+2z\right)^2\)
Câu 2: \(Q=2x^2-6x\)
\(\Leftrightarrow Q=2\left(x^2-2.\dfrac{3}{2}.x+\left(\dfrac{3}{2}\right)^2\right)-\dfrac{9}{2}\)
\(\Leftrightarrow Q=2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\)
Min \(Q=\dfrac{-9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
2.
\(a,Q=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\)Vậy \(Min_Q=\dfrac{-9}{2}\) khi \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
\(b,M=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
vậy \(Min_M=\dfrac{3}{4}\)khi \(\left[{}\begin{matrix}x-\dfrac{1}{2}=0\\x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)
= \(z^2\)
Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2
=[(x+y+z)-(x+y)]2=z2
5x(x-2000)-(x-2000)=0
(x-2000)(5x-1)=0
\(\left[{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
Bài 6:
a) Ta có: \(4x-10=0\)
\(\Leftrightarrow4x=10\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy: \(S=\left\{\dfrac{5}{2}\right\}\)
b) Ta có: \(7-3x=9-x\)
\(\Leftrightarrow-3x+7-9+x=0\)
\(\Leftrightarrow-2x-2=0\)
\(\Leftrightarrow-2x=2\)
\(\Leftrightarrow x=-1\)
Vậy: S={-1}
c) Ta có: \(2x-\left(3-5x\right)=4\left(x+3\right)\)
\(\Leftrightarrow2x-3+5x=4x+12\)
\(\Leftrightarrow7x-3-4x-12=0\)
\(\Leftrightarrow3x-15=0\)
\(\Leftrightarrow3x=15\)
\(\Leftrightarrow x=5\)
Vậy: S={5}
d) Ta có: \(5-\left(6-x\right)=4\left(3-2x\right)\)
\(\Leftrightarrow5-6+x=12-8x\)
\(\Leftrightarrow x+11-12+8x=0\)
\(\Leftrightarrow9x-1=0\)
\(\Leftrightarrow9x=1\)
\(\Leftrightarrow x=\dfrac{1}{9}\)
Vậy: \(S=\left\{\dfrac{1}{9}\right\}\)
e) Ta có: \(4\left(x+3\right)=-7x+17\)
\(\Leftrightarrow4x+12+7x-17=0\)
\(\Leftrightarrow11x-5=0\)
\(\Leftrightarrow11x=5\)
\(\Leftrightarrow x=\dfrac{5}{11}\)
Vậy: \(S=\left\{\dfrac{5}{11}\right\}\)
bn cs the giups mk cacs bt cons laij dc ko tu bt 1- 5