giải hộ tui bài này với

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

Answer:

Bài 2:

\(4x^2-x=0\)

\(\Rightarrow x\left(4x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\4x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)

\(x\left(x-1\right)-x+1=0\)

\(\Rightarrow x\left(x-1\right)-\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)^2=0\)

\(\Rightarrow x=1\)

Bài 3:

a) Tại \(x=\frac{3}{2}\) thay vào A ta được

\(A=\frac{4x^2+4x+1}{4x^2-1}=\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}=\frac{2x+1}{2x-1}\)

\(A=\frac{2.\frac{3}{2}+2}{2.\frac{3}{2}-1}=2\)

b) \(B=\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)

\(=\frac{\left(1-2x\right)\left(2x-1\right)+4x^2-1}{4x^2-2x}\)

\(=\frac{2x-1-4x^2+2x+4x^2-1}{4x^2-2x}\)

\(=\frac{4x-2}{4x^2-2x}\)

\(=\frac{2\left(2x-1\right)}{\left(2x-1\right)2x}\)

\(=\frac{1}{x}\)

25 tháng 10 2021

ai giải giúp em đi ạ em đang cần gấp lắm ạ 

24 tháng 7 2021

mik nhầm nha toán lớp 7

24 tháng 7 2021

\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)

\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)

\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)

\(< =>4x>0\)

\(x>0\)

\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)

\(x+3,4+x+2,4+x+7,2=4x\)

\(x=13\left(TM\right)\)

\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(3^n.27+3^n.3+2^n.8+2^n.4\)

\(3^n.30+2^n.12\)

\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)

\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)

25 tháng 3 2017

Bài 1:

a) Ta có: AB // CD (ABCD là hình chữ nhật; AB,CD là cạnh đối);

=> DBA = BDC (so le trong) (1)

Xét: \(\Delta\) AHB và \(\Delta\) BCD có:

AHB = BCD =900 (gt)

DBA = BDC (theo (1))

Do đó \(\Delta\) AHB đồng dạng \(\Delta\) BCD (g-g)

b) Ta có: *AB = CD = 12(cm)

* \(\Delta\) BCD vuông tai C(gt)

=> BC2 + CD2= BD2

hay 92 + 122 = BD2

=> BD2 = 225

=> BD = \(\sqrt{225}\) =15

Ta có: \(\Delta\) AHB đồng dạng \(\Delta\) BCD (Cmt)

=> \(\dfrac{AH}{BC}\) = \(\dfrac{AB}{BD}\) hay \(\dfrac{AH}{9}\) = \(\dfrac{12}{15}\)

=> AH = \(\dfrac{9.12}{15}\) = 7,2

c) Ta có: \(\Delta\) AHB vuông tại A(gt)

=> HB2 = AB2 - AH2

hay HB2 = 122 - 7,22 = 92,16

=> HB = \(\sqrt{92,16}\) = 9,6

Ta có : S\(\Delta AHB\) =\(\dfrac{AH.HB}{2}\) = \(\dfrac{7,2.9,6}{2}\) = 34.56

26 tháng 3 2017

bài 3:

A C B H 15cm 12cm

8 tháng 2 2017

1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)

\(\Leftrightarrow x-y=10y-10z\)

\(\Leftrightarrow x=11y-10z\)

Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:

\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)

Chá quá, có ghi nhìn không rõ đề

8 tháng 2 2017

2) \(2x^2=9x-4\)

\(\Leftrightarrow2x^2-9x+4=0\)

\(\Leftrightarrow2x^2-8x-x+4=0\)

\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow2x-1=0\) hoặc x-4=0

1) 2x-1=0<=>x=1/2

2)x-4=0<=>x=4(Loại)

=> x=1/2

30 tháng 4 2017

đề 1 bài 4

xét tam gics ABC và tam giác HBA có

góc B chung

góc BAC = góc BHA (=90 độ)

=> tam giác ABC đồng dạng vs tam giác HBA (g.g)

=> AB/HB=BC/AB=> AB^2=HB *BC

áp dụng đl py ta go trog tam giác vuông ABC có

BC^2 = AB^2 +AC^2=6^2+8^2=100

=> BC =\(\sqrt{100}\)=10 cm

ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )

=> AC/AH=BC/BA=>AH=8*6/10=4.8CM

=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm

=>HC =BC-BH=10-3,6=6,4cm

30 tháng 4 2017

dề 1 bài 1

5x+12=3x -14

<=>5x-3x=-14-12

<=>2x=-26

<=> x=-12

vạy S={-12}

(4x-2)*(3x+4)=0

<=>4x-2=0<=>x=1/2

<=>3x+4=0<=>x=-4/3

vậy S={1/2;-4/3}

đkxđ : x\(\ne2;x\ne-3\)

\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)

<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)

=> 4x+12+x-2=0

<=>5x=-10

<=>x=-2 (nhận)

vậy S={-2}

2 tháng 4 2017

B11:

theo đề bài, ta có: AB=CD=4cm

BC=AD=3cm

áp dụng ĐL pytago vào tam giác vuông ADB, ta có:

\(AB^2+AD^2=DB^2\Rightarrow BD=5cm\)

ta có công thức: \(AH=\dfrac{AD.AB}{BD}=\dfrac{12}{5}=2,4cm\)

áp dụng ĐL pytago vào tam giác vuông ADH, ta có:

\(AH^2+DH^2=AD^2\\ \Rightarrow DH=1,8cm\)

NM
3 tháng 9 2021

Mình làm 1 bài thôi nhé

Bài 5 

\(a.1-2y+y^2=\left(1-y\right)^2\)

\(b.\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x-4\right)\left(x+6\right)\)

\(c.1-4x^2=1-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)

\(d.27+27x+9x^2+x^3=3^3+3.3^3.x+3.3.x^2+x^3=\left(3+x\right)^3\)

\(f.8x^3-12x^2y+6xy-y^3=\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y-y^3=\left(2x-y\right)^3\)

3 tháng 9 2021

Bài 4 : 

a, \(x^3+3x^2-x-3=x^2\left(x+3\right)-\left(x+3\right)=\left(x+1\right)\left(x-1\right)\left(x+3\right)\)

b, bạn xem lại đề nhé 

c, \(x^2-4x+4-y^2=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)

d, \(5x+5-x^2+1=5\left(x+1\right)+\left(1-x\right)\left(x+1\right)=\left(x+1\right)\left(6-x\right)\)