Cần giải các bài toán highlight màu xanh nước bi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

Bài 5 : 

9, \(\frac{3-\sqrt{3}}{3\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{3\sqrt{3}}=\frac{\sqrt{3}-1}{3}\)

10, \(\frac{2\sqrt{3}-\sqrt{6}}{5\sqrt{3}}=\frac{\sqrt{3}\left(2-\sqrt{2}\right)}{5\sqrt{3}}=\frac{2-\sqrt{2}}{5}\)

13, \(\frac{5-2\sqrt{5}}{-\left(\sqrt{5}-2\right)}=\frac{\sqrt{5}\left(\sqrt{5}-2\right)}{-\left(\sqrt{5}-2\right)}=-\sqrt{5}\)

14, \(\frac{4\sqrt{13}-13}{\sqrt{13}-4}=\frac{\sqrt{13}\left(4-\sqrt{13}\right)}{-\left(4-\sqrt{13}\right)}=-\sqrt{13}\)

17, \(\frac{5\sqrt{6}-6\sqrt{5}}{\sqrt{6}-\sqrt{5}}=\frac{\sqrt{30}\left(\sqrt{5}-\sqrt{6}\right)}{-\left(\sqrt{5}-\sqrt{6}\right)}=-\sqrt{30}\)

18, \(\frac{2\sqrt{5}-5\sqrt{2}}{\sqrt{10}}=\frac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{10}}=\sqrt{2}-\sqrt{5}\)

24 tháng 8 2021

Bài 1 : 

10, \(3\sqrt{2}-6=3\left(\sqrt{2}-2\right)\)

13, \(5\sqrt{3}+3\sqrt{5}-\sqrt{15}=\sqrt{15}\left(\sqrt{5}+\sqrt{3}-1\right)\)

11, \(12\sqrt{10}-16\sqrt{4}=12\sqrt{10}-32=4\left(3\sqrt{10}-8\right)\)

14, \(\sqrt{a}\sqrt{a}+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)ĐK : x >= 0 

16, \(ab^2-2\sqrt{a}b-ab=\sqrt{a}b\left(\sqrt{a}b-2-\sqrt{a}\right)\)ĐK : x >= 0 

17, \(a\sqrt{a}-2b\sqrt{a}=\sqrt{a}\left(a-2b\right)\)ĐK : x >= 0 

DD
7 tháng 11 2021

Bài 1: 

Kẻ \(OM\perp AB\)\(OM\)cắt \(CD\)tại \(N\).

Khi đó \(MN=8cm\).

TH1: \(AB,CD\)nằm cùng phía đối với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)

\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2) 

Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).

TH2: \(AB,CD\)nằm khác phía với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)

\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)

Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).

DD
7 tháng 11 2021

Bài 3: 

Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).

\(MA+MB=MA'+MB\ge A'B\)

Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).

Suy ra \(M\left(\frac{5}{3},0\right)\).

2 tháng 9 2021

Ta có : \(\frac{AB}{AC}=\frac{1}{4}\Rightarrow AB=\frac{1}{4}AC\)

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{64}=\frac{1}{\left(\frac{1}{4}AC\right)^2}+\frac{1}{AC^2}\Leftrightarrow AC=8\sqrt{17}\)cm

\(\Rightarrow AB=\frac{8\sqrt{17}}{4}=2\sqrt{17}\)cm 

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=34\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=2\)cm 

-> HC = BC - HB = 32 cm 

a, \(P=\frac{a^3-a+2b-\frac{b^2}{a}}{\left(1-\sqrt{\frac{a+b}{a^2}}\right)\left(a+\sqrt{a+b}\right)}:\left[\frac{a^2\left(a+b\right)+a\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}+\frac{b}{a-b}\right]\)

\(=\frac{\frac{a^4-a^2-2ab-b^2}{a}}{\frac{\left(a-\sqrt{a+b}\right)\left(a+\sqrt{a+b}\right)}{a}}:\left[\frac{\left(a+b\right)\left(a^2+a\right)}{\left(a+b\right)\left(a-b\right)}+\frac{b}{a-b}\right]\)

\(=\frac{a^4-a^2-2ab-b^2}{a^2-a-b}:\frac{a^2+a+b}{a-b}\)

\(=\frac{a^4-a^2-2ab-b^2}{a^2-\left(a+b\right)}.\frac{a-b}{a^2+\left(a+b\right)}\)

\(=\frac{\left(a^4-a^2-2ab-b^2\right).\left(a-b\right)}{a^4-\left(a+b\right)^2}=\frac{\left[a^4-\left(a+b\right)^2\right].\left(a-b\right)}{a^4-\left(a+b\right)^2}=a-b\)

b, Có \(P=a-b=1\)\(\Rightarrow a=1+b\)

\(a^3-b^3=7\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)=7\)

\(\Rightarrow a^2+ab+b^2=7\)

\(\Leftrightarrow\left(1+b\right)^2+\left(1+b\right)b+b^2=7\)

\(\Leftrightarrow b^2+2b+1+b^2+b+b^2=7\)

\(\Leftrightarrow3b^2+3b-6=0\)

Bạn tự giải phương trình tìm b => a

Bài 2 :

\(a,y=\left(m+1\right)x-2m-5\) \(\Leftrightarrow\left(m+1\right)x-2m-5-y=0\)

\(\Leftrightarrow mx+x-2m-5-y=0\)\(\Leftrightarrow m\left(x-2\right)+x-y-5=0\)

Có y luôn qua điểm A cố định với A( x0 ; y0 ) \(\orbr{\begin{cases}x_0-2=0\\x_0-y_0-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x_0=2\\y_0=-3\end{cases}}\)

=> A( 2;-3)

Gọi H là chân đường vuông góc hạ từ O xuống d => \(OH\le OA\)

\(OH_{max}=OA\)khi \(H\equiv A\)\(\left(d\perp OA\right)\)

=> đường thẳng OA qua O( 0;0 ) và A( 2;-3 ) => \(y=-\frac{3}{2}x\)

\(\Rightarrow d\perp OA\)=> hệ số góc \(m.\) \(-\frac{3}{2}=-1\Rightarrow m=\frac{2}{3}\)

b, \(y=0\Rightarrow\left(m+1\right)x-2m-5=0\)\(\Rightarrow x=\frac{2m+5}{m+1}\)\(\Rightarrow A\left(\frac{2m+5}{m+1};0\right)\)

\(x=0\Rightarrow y=-2m-5\Rightarrow B\left(0;-2m-5\right)\)

\(\Rightarrow OA=\sqrt{\frac{2m+5}{m+1}};OB=\sqrt{-2m-5}\)

\(\Rightarrow\frac{1}{2}.OA.OB=\frac{3}{2}\Rightarrow OA.OB=3\)

\(\Rightarrow\left(OA.OB\right)^2=9\Rightarrow\frac{\left(2m+5\right)^2}{m+1}=9\)

\(\Rightarrow4m^2+20m+25-9m-9=\)

\(\Rightarrow4m^2+11m+16=0\)

14 tháng 10 2021

bài này dễ quá chỉ cần tìm nhân tử ở mẫu rồi phân tích ra là xong ( k) nhé