Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f,=\left(5^2+3\right):7=28:7=4\\ g,=7^2-9+8\cdot25=49-9+200=240\\ h,=600+72+18=690\\ i,=5^2+5-20=10\\ j,=45-28+83=100\)
\(2A=\frac{4}{1.5}+\frac{6}{5.11}+\frac{8}{11.19}+\frac{10}{19.29}+\frac{12}{29.41}\)
\(=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{11}+\frac{1}{11}-\frac{1}{19}+...+\frac{1}{29}-\frac{1}{41}=1-\frac{1}{41}=\frac{40}{41}\)
\(\Rightarrow A=\frac{20}{21}\)
\(3B=\frac{3}{1.4}+\frac{6}{4.10}+\frac{9}{10.19}+\frac{12}{19.31}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{10}+\frac{1}{10}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}\)
\(=1-\frac{1}{31}=\frac{30}{31}\)
\(\Rightarrow B=\frac{10}{31}=\frac{20}{62}<\frac{20}{41}\)
Do đó $A>B$
Ta có: \(A=\dfrac{2}{1.5}+\dfrac{3}{5.11}+\dfrac{4}{11.19}+\dfrac{5}{19.29}+\dfrac{6}{29.41}\)
\(2A=1-\dfrac{1}{5}+\dfrac{1}{5}+...+\dfrac{1}{29}-\dfrac{1}{41}\)
\(2A=1-\dfrac{1}{41}=\dfrac{40}{41}\)
\(A=\dfrac{20}{41}\)
Lại có: \(B=\dfrac{1}{1.4}+\dfrac{2}{4.10}+\dfrac{3}{10.19}+\dfrac{4}{19.31}\)
\(3B=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}\)
\(3B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+...+\dfrac{1}{19}-\dfrac{1}{31}\)
\(3B=1-\dfrac{1}{31}=\dfrac{30}{31}\)
\(B=\dfrac{10}{31}\)
Vì \(\dfrac{20}{41}>\dfrac{10}{31}\) nên...
\(3n-2\inƯ\left(15\right)\) \(=\left\{1;-1;3;-3;5;-5;15;-15\right\}.\)
\(\Leftrightarrow n\in\left\{1;\dfrac{1}{3};\dfrac{5}{3};\dfrac{-1}{3};\dfrac{7}{3};-1;\dfrac{17}{3};\dfrac{-13}{3}\right\}.\)
Mà \(n\ne\dfrac{2}{3};n\in Z.\)
\(\Rightarrow n\in\left\{1;-1\right\}.\)
a) Ư(60):{ 1;2;3;4;5;6;10;12;15;20;30;60}
Ư(84):{ 1;2;4;6;7;12;14;21;42;84}
Ư(120):{ 1;2;3;4;5;6;8;10;12;15;20;24;30;40;60;120}
ƯC(60;84;120):{ 2;4;6;12}
nhưng vì x_> 6 nên x = 2,4,6
\(\frac{2^3.3}{2^2.3^2.5}=\frac{2}{3.5}=\frac{2}{15}\)
Thiếu dấu nhân ở chỗ \(2^2.3^2\)nha
2006 . 125 + \(\dfrac{1000}{126}\) . 2005 - 888 = 265774,6984
đk : \(n\ne-\dfrac{1}{3}\)
gọi d là ƯCLN(18n+3,21n+7)
ta có 18n+3chia hết cho d
21n+7 chia hết cho d
⇔21n+7-18n-3 chia hết cho d
⇔126n+42-126n-21 chia hết cho d
21 chia hết cho d
⇒d∈Ư(21)=1;3;7;21
n ≠ 3k-1;3k-3;3k-7;3k-21