Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko có chuyện chia mà được thương và số dư bằng nhau đâu bạn ạ
Từ đề bài ta có:
\(T=\dfrac{1+2}{2}.\dfrac{1+3}{3}.\dfrac{1+4}{4}...\dfrac{1+98}{98}.\dfrac{1+99}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{100}{2}\)
\(=50\).
\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{99}{98}.\dfrac{100}{99}\)
\(T=\dfrac{3.4.5......99}{3.4.5......99}.\dfrac{100}{2}\)
\(T=50\)
2-->8: 4CS
10-->98: 45.2=90CS
100-->998: 450.3=1350CS
1000--> ?: ?.4=?CS
Số cuối cùng của dãy là:
{[(2016-4-90-1350):4]-1}.2+1000=1284
=>CS thứ 2016 của dãy là 4
a: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)
=>x=12; y2=1; z3=-8
=>x=12; \(y\in\left\{1;-1\right\}\); z=-2
b: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{z}{-17}=\dfrac{t}{9}\)
=>x/5=y/-3=z/-17=t/9=-2
=>x=-10; y=6; z=34; t=-18
Gọi số cần tìm là \(n\) \(\left(n\in N\right)\)
Vì \(n⋮5\) và \(n⋮27\)
\(\Rightarrow n\) có chữ số tận cùng là \(0\) hoặc \(5\)
+) Xét \(n=\)*\(975\) chia hết cho \(9\) \(\Rightarrow\) *\(=6\). Thử lại \(6975\) \(⋮̸\) \(27\) \(\rightarrow loại\)
+) Xét \(n=\)*\(970\) chia hết cho \(9\) \(\Rightarrow\) *\(=2\) Thử lại \(2970⋮27\) (TM)
Vậy \(n=2970\) là giá trị cần tìm
~~Chúc bn học tốt!!~~
theo mk nghĩ là 27 = 3.9. C/m chia hết cho 27 thì c/m chia hết cho 3 và 9 nhưng mà ƯCLN(3,9)=3 kia mà. Bạn giải thích đoạn đó giúp mk đc ko?
-1/2+3/21+ -2/6 + -5/30 chứ gì
đầu tiên rút gọn lại cho nó nhỏ sẽ dễ tính hơn
-1/2+3/21+ -2/6 + -5/30
= -1/2 + 1/7 + -1/3 + -1/6
=( -1/2 + -1/3 + -1/6) +1/7
=(-3/6 + -2/6 + -1/6) + 1/7
=-6/6 + 1/7
=1 +1/7
=7/7+1/7
=8/7
dấu hiệu chia hết cho 4 là : 2 số cuối cùng chia hết cho 4 thì số đó chia hết cho 4
dấu hiệu chia hết 5 : số có tận cùng là 0 ; 5 thì chia hết 5
Vì \(x1357y⋮5\) => y=0 hoặc 5
TH1 : y = 0
=> x13570\(⋮5\)
vì 70 \(⋮4̸\) ( loại )
TH2 : y = 5
=> \(x13575⋮5\) nhưng 75 ko chia hết 4 (loại )
từ 2 trường hợp trên => ko tồn tại y
\(\Leftrightarrow\) ko có số x1357y \(⋮5;4\)
Vì \(\overline{x1357y}⋮5\) nên \(y\in\left\{0;5\right\}\).
Do \(75⋮4\) nên \(y=0\). Ta được \(\overline{x13570}\).
Vì \(\overline{x13570}⋮4;5\) nên \(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\).
Vậy \(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)và \(y=0\).
Ta có :
\(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+.........................+\dfrac{1}{81}+\dfrac{1}{10^2}\)
\(A=\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....................+\dfrac{1}{9^2}+\dfrac{1}{10^2}\)
Mà :
\(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}>\dfrac{1}{4.5}\)
\(\dfrac{1}{5^2}>\dfrac{1}{5.6}\)
.........................................
\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)
\(\dfrac{1}{10^2}>\dfrac{1}{10.11}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+........................+\dfrac{1}{9.10}+\dfrac{1}{10^2}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...................+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{7}{12}-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{65}{132}\)\(\rightarrowđpcm\)
Ta có
A = \(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\)
A = \(\dfrac{1}{4}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}+\dfrac{1}{10.10}\)
Vì \(\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
.................
\(\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\dfrac{1}{10.10}>\dfrac{1}{10.11}\)
=> A > \(\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)
A > \(\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)
A > \(\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)
A > \(\dfrac{7}{12}-\dfrac{1}{11}\)
A > \(\dfrac{65}{132}\)
Vậy A > \(\dfrac{65}{132}\) < đpcm)
Bài 1:
a) Ta có: \( \left|x+2\right|=\left|3-2x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-3\\x+2=3-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2x=-3-2\\x+2x=3-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=-5\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{3}\end{matrix}\right.\)
b) Ta có: \(\left|2x-4\right|=\left|3-x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-4=3-x\\2x-4=x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x+x=3+4\\2x-x=-3+4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=7\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=1\end{matrix}\right.\)