Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL :
a) Vẽ thêm các tia đối của các tia Dm, Cp, Bq và An.
Vẽ thêm các đường phân giác Ds và Ar của góc ∠D và ∠A.
Khi đó chứng minh được Cp song song với Ds.
Tương tự chứng minh được Ar song song với Dm.
Từ đó suy ra được: An // Cp và Dm // Bq.
b) Sử dụng tính chất tia phân giác của hai góc bù nhau có được Ds, Dm vuông góc với nhau.
Từ đó suy ra được: An vuông góc với Bq.
Hok tốt
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
`-` Các phần tử thuộc tập hợp A mà k thuộc B:
`2; a; 4; 6; 8`
`=> C =`\(\left\{2;a;4;6;8\right\}\)
`b)`
`-` Các phần tử thuộc B mà k thuộc A:
`3; 7; 9; c`
`=> D =`\(\left\{3;7;9;c\right\}\)
`c)`
Các phần tử vừa thuộc A và B:
`1; b; 10`
`=> E =`\(\left\{1;b;10\right\}\)
`d)`
\(F=\left\{1;2;3;4;6;7;8;9;10;a;b;c\right\}\)
a) \(C=\left\{2;a;4;6;8\right\}\)
b) \(D=\left\{3;7;9;c\right\}\)
c) \(E=\left\{1;2;a;4;b;6;8;10;3;7;9;c\right\}\)
d) \(F=\left\{1;b;10\right\}\)
1) Tính góc ∠E1
Ta có d’//d” (gt)
⇒ ∠C = ∠E1 ( So le trong)
⇒ ∠E1 = 600 vì ∠C = 600
2) Tính ∠G3
Ta có d’//d”
⇒ ∠G2 = ∠D (Đồng vị)
⇒ ∠G1 = 1100
3) Tính ∠G3
Vì ∠G2 + ∠G3 = 1800 (kề bù)
⇒ ∠G3 = 700
4) Tính ∠D4
∠D4 = ∠D (Đối đỉnh)
⇒ ∠D4 = 1100
5) Tính ∠A5
Ta có d//d”
⇒ ∠A5 = ∠ E1 (Đồng vị)
⇒ ∠A5 = 600
6) Tính ∠B6
Ta có d//d”
⇒ ∠B6 = ∠G3 (Đồng vị)
⇒ ∠B6 = 700
Cái bài này mình đã từng đăng để hỏi mấy bạn kia.
Nhưng đề câu này thiểu bạn ơi.
Phải có x=a/m ; y=b/m
À thôi, mk viết đầy đủ đề thử nhé !
Giả sử:x=a/m;y=b/m (a,b,m thuộc Z.m > 0) và x < y.
Hãy chứng minh (chứng tỏ) rằng nếu chọn z=a+b/2m thì ta có x < y < z.
Trong sách lớp 7 đề y như z đó !
Mk ghi cách làm luôn nha !
Giả sử x=a/m,y=b/m (a,b,m thuộc Z,m > 0 )
Vì x < y nên ta suy ra a < b.
ta có: x=a/m, y=b/m <=> x=2a/am. y=2b/2m
mà a < b nên a+a < a+b <=> 2a < a+b
Do 2a < a+b thì x < y ( 1 )
Ta lại có: a < b nên a+b < b+b <=> a+b < 2b
Mà a+b < 2b <=> x < z ( 2 )
Từ ( 1 ) và ( 2 ) suy ra x < y < z (ĐPCM)
,,,,, D = {1; 9; 10; 12}
Tập hợp D là?
A. D = {8; 9; 10; 12}
B. D = {1; 9; 10}
C. D = {9; 10; 12}
D. D = {1; 9; 10; 12}