Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để (d) song song với (d') thì \(\hept{\begin{cases}2=2m^2\\m^2+1\ne m^2+m\end{cases}\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne1\end{cases}\ne}m=-1}\)
b) Phương trình hoành độ giao điểm giữa (P) và (d) là:
\(x^2=2x+m^2+1\)
\(\Leftrightarrow x^2-2x-\left(m^2+1\right)=0\)
\(\Delta'=1+\left(m^2+1\right)=m^2+2>0\)
=> Phương trình luôn có 2 nghiệm phân biệt
=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B (đpcm)
c) Ta có:
\(x_A^2+x_B^2=\left(x_A+x_B\right)^2-2x_Ax_B=14\)(1)
Theo ta-let ta có:
\(\hept{\begin{cases}x_A+x_B=2\\x_A.x_B=-m^2-1\end{cases}}\)
Phương trình (1) trở thành:
\(2^2-2.\left(-m^2-1\right)=14\)
\(\Rightarrow m=\pm2\)
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)
Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=\left(-m\right)^2-4.1\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\)\(\Leftrightarrow m-2\ne0\)\(\Leftrightarrow m\ne2\)
Khi đó \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)(hệ thức Vi-ét)
Độ dài cạnh huyền của tam giác vuông có 2 cgv là \(x_1,x_2\)là \(\sqrt{x_1^2+x_2^2}=\sqrt{\left(x_1+x_2\right)^2-2x_1x_2}=\sqrt{m^2-2\left(m-1\right)}=\sqrt{m^2-2m+2}\)
Ta có \(x_1x_2=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)hệ thức lượng trong tam giác vuông.
\(\Leftrightarrow m-1=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)\(\Leftrightarrow\frac{m-1}{\sqrt{m^2-2m+2}}=\frac{1}{\sqrt{5}}\)\(\Leftrightarrow\sqrt{\frac{m^2-2m+1}{m^2-2m+2}}=\sqrt{\frac{1}{5}}\)\(\Leftrightarrow\frac{m^2-2m+1}{m^2-2m+2}=\frac{1}{5}\)\(\Leftrightarrow5m^2-10m+5=m^2-2m+2\)\(\Leftrightarrow4m^2-8m+3=0\)
\(\Delta_1=\left(-8\right)^2-4.4.3=16>0\)
\(\Rightarrow\orbr{\begin{cases}m_1=\frac{-\left(-8\right)+\sqrt{16}}{2.4}=\frac{3}{2}\\m_2=\frac{-\left(-8\right)-\sqrt{16}}{2.4}=\frac{1}{2}\end{cases}}\)
Vậy để [...] thì \(\orbr{\begin{cases}m=\frac{3}{2}\\m=\frac{1}{2}\end{cases}}\)
ĐK \(x_2\ge0;\)
Phương trình hoành độ giao điểm
x2 = mx + m + 1
\(\Leftrightarrow x^2-mx-m-1=0\)
Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)
\(\Rightarrow\)Phương trình có nghiệm với mọi m
Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)
Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)
khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1
\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình
Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)
\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm)
x2-(m+4).x+4m=0
1) Khi m=-1
=> x2-3x-4=0
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
Xét \(\Delta=\left(m+4\right)^2-4.4m=m^2-8m+16=\left(m-4\right)^2>0\)
\(\Rightarrow x\ne4\)
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=m+4\\x_1x_2=4m\end{cases}}\)
do đó
\(x_1^2+\left(m+4\right)x_2=16\)
\(\Leftrightarrow x_1^2+x_2\left(x_1+x_2\right)=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=16\)
\(\Leftrightarrow m^2+8m+16-4m=16\)
\(\Leftrightarrow m^2+4m=0\)
\(\Rightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\)
Sửa đề (d) y=2(m-1)x+m^2+2m
a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)
Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)
=>\(3=2\left(m-1\right).1+m^2+2m\)
<=>\(m^2+2m+2m-2-3=0\)
<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)
b, Phương trình hoành độ giao điểm của (P) và (d) :
\(x^2=2\left(m-1\right)x+m^2+2m\)
<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)
\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)
Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B
c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)
\(x_1^2+x_2^2+6x_1x_2>2017\)
<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)
<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)
<=>\(4m^2-8m+4-4m^2-8m-2017>0\)
<=>\(-16m-2013>0\)
<=>\(m< \frac{-2013}{16}\)
\(\Delta=4^2-4\left(m+1\right)=16-4m-4=12-4m\)
Để phương trình có 2 nghiệm thì: \(\Delta\ge0\Leftrightarrow12-4m\ge0\Leftrightarrow m\le3\)
Với \(m\le3\), theo hệ thức Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{cases}}\)
\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=16-2\left(m+1\right)=14-2m\)
Vì \(x_1^3+x_2^3< 100\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)< 100\)
\(\Leftrightarrow4\left[14-2m-\left(m+1\right)\right]< 100\)
\(\Leftrightarrow14-2m-m-1< 25\)
\(\Leftrightarrow13-3m< 25\)
\(\Leftrightarrow-3m< 12\Leftrightarrow m>-4\)
Vậy \(-4< m\le3\)
nên các giá trị nguyên của m là -3;-2;-1;0;1;2;3
Hoành độ giao điểm của ( p) và (f) là nghiệm phương trình:
x^2 = (m-1) x + 2
<=> x^2 - ( m - 1) x - 2 = 0 (1)
Vì \(\frac{c}{a}=-2< 0\) nên phương trình luôn có 2 nghiệm phân biệt
=> ( P) cắt (f) tại hai điểm M; N phân biệt với mọi m
g/s: M( a; (m-1) a + 2 ) ; N ( b; (m-1) b + 2 )
=> MN= \(\sqrt{\left(a-b\right)^2+\left(m-1\right)^2\left(a-b\right)^2}\)
MN nhỏ nhất
<=> \(\left(a-b\right)^2+\left(m-1\right)^2\left(a-b\right)^2\) nhỏ nhất
Ta có: \(\left(a-b\right)^2+\left(m-1\right)^2\left(a-b\right)^2=\left(a-b\right)^2\left(1+\left(m-1\right)^2\right)\)
= \(\left[\left(a+b\right)^2-4ab\right]\left(1+\left(m-1\right)^2\right)\)
= \(\left[\left(m-1\right)^2+8\right]\left(1+\left(m-1\right)^2\right)\)
\(\ge8.1=8\)
Dấu "=" xảy ra <=> m = 1
min MN = \(\sqrt{\left(a-b\right)^2+\left(m-1\right)^2\left(a-b\right)^2}\)= 2\(\sqrt{2}\)