Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
câu a là c/m 2 tam giác bằng nhau nhé: tg AED và tg ACD từ đó suy là các ggo1c và cạnh tương ứng bằng nhau nha!
câu b là: vì tg AEC là tg cân( AE=EC) , ad là tia phân giác mà I thuộc Ad nên Ai cũng là tia phân giác góc EAC suy ra AI là đường trung trực suy ra I là trung điểm Ec và Ai vuông góc EC
???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
a, xét tam giác aec và tam giác aed có
ae chung
ec=ed(gt)
ac=ad(gt)
=>tam giác aec = tam giác aed(ccc)
b. từ cma ta có tam giác aec = tam giác aed
=>góc cae=góc dac(2 góc tg ứng)
xét tam giác cai và tam giác dai có
ca=da(gt)
góc cae=góc dac(cmt)
ai chung
=>tam giác cai =tam giác dai(cgc)
=>ci=di(2 cạnh tg ứng)
1)
a) Xét 2 \(\Delta\) \(ABC\) và \(ADE\) có:
\(AB=AD\left(gt\right)\)
\(\widehat{BAC}=\widehat{DAE}\) (vì 2 góc đối đỉnh)
\(AC=AE\left(gt\right)\)
=> \(\Delta ABC=\Delta ADE\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta ABC=\Delta ADE.\)
=> \(\widehat{ABC}=\widehat{ADE}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(BC\) // \(ED.\)
c) Xét 2 \(\Delta\) vuông \(AEH\) và \(AFH\) có:
\(\widehat{AHE}=\widehat{AHF}\left(=90^0\right)\)
\(EH=FH\left(gt\right)\)
Cạnh AH chung
=> \(\Delta AEH=\Delta AFH\) (hai cạnh góc vuông tương ứng bằng nhau).
=> \(AE=AF\) (2 cạnh tương ứng).
Mà \(AE=AC\left(gt\right)\)
=> \(AF=AC\left(đpcm\right).\)
Chúc bạn học tốt!
3:
Xét ΔABD và ΔKBD ta có:
BK = AB (gt)
\(\widehat{ABD}=\widehat{DBK}\) (DB là phân giác của góc ABC)
BD: cạnh chung
=> ΔABD = ΔKBD (c - g - c)
b/ Có ΔABD = ΔKBD (câu a)
=> \(\widehat{DKB}=\widehat{DAB}=90^0\) (2 góc tương ứng)
=> \(DK\perp BC\) (1)
Lại có AH ⊥ BC (gt) (2)
Từ (1) và (2)
=> DK // AH
P/s: Mik làm đến đây thôi vì phải ôn bài nữa!
Bài này khó quá!
Mình chỉ giải được câu a thôi!
Bạn tự vẽ hình ghi gt kl nha!
a) Xét 2 tam giác ABI và ADI có:
AI là cạnh chung
Góc A1 = góc A2 (gt)
AB = AD (gt)
Suy ra tam giác ABI = tam giác ADI (c-g-c)
Suy ra IB = ID (2 cạnh tương ứng)
b) Ta co: goc BIE=goc DIC(doi dinh)
=> goc AIE=goc AIB+goc BIE=goc AID+goc DIC=gocAIC
Xet 2 tam giac AIE va tam giac AIC, ta co:
goc EAI=goc CAI = 45o
chung AI
goc AIE= goc AIC(cmt)
=> tam giac AIE=tam giac AIC (g.c.g)
=> AC = AE
B A C D E M
a) Xét \(\Delta ABD\) và \(\Delta ADE\) có :
\(AB=AE\left(gt\right)\)
\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)
\(AD:chung\)
=> \(\Delta ABD\) = \(\Delta ADE\) (c.g.c)
b) Xét \(\Delta MAD\) và \(\Delta CAD\)có :
AD : chung
\(\widehat{DAM}=\widehat{DAE}\left(gt\right)\)
\(AM=AC\left(AB=AE-cmt\right)\)
=> \(\Delta MAD\) = \(\Delta CAD\) (c.g.c)
=> DM = DC (2 cạnh tương ứng)
c) Xét \(\Delta AMC\) có :
AM = AC (cmt)
\(\widehat{AMD}=\widehat{AED}\) (do \(\Delta MAD\) = \(\Delta CAD\) (c.g.c) - cmt)
=> \(\Delta AMC\) cân tại A
Mà : MD = DC
=> AD là đường trung tuyến đồng thời là đường trung trực trong tam giác Cân (tính chất tam giác cân)
=> \(AD\perp CM\) (đpcm)