K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chug

\(\widehat{HAD}=\widehat{EAD}\)

Do đó: ΔAHD=ΔAED

Suy ra: AH=AE: DH=DE

=>AD là đường trung trực của HE

c: Ta có: DH=DE

mà DE<DC
nên DH<DC

12 tháng 8 2017

a) Ta có AB^2 + AC^2=6^2 + 8^2= 36 + 64= 100=BC^2

=> ΔABC vuông tại A (định lý Py- ta-go đảo)

b) Xét ΔAHD và ΔAED có:

AD là cạnh chung

^AHD=^AED (=90°)

^HAD=^EAD (AD là tia phân giác)

Vậy ΔAHD = ΔAED

=> AH=AE

     DH=DE

Nên AD là đường trung trực của HE

c) ΔDEC vuông tại E có DC là cạnh huyền nên DC là cạnh lớn nhất.

Do đó DE<DC

Mà DH=DE (cmt)

Nên DH<DC

26 tháng 4 2018

a) Xét tam giác ABC có:
6^2 +8^2 =10^2
<=> AB^2 +AC^2 =BC^2
Áp dụng định lí Py-ta-go
=> tam giác ABC vuông tại A
=> đpcm
b)
+) xét tam giác AHD và tam giác AED có:
góc H = góc E =90 độ
cạnh AD chung
góc HAD = góc DAE ( gt)
=> tam giác AHD = tam giác AED (cạnh huyền -góc nhọn)
=> AH =AE ( 2 cạnh tương ứng)
=> Tam giác AHE cân tại A (1)
Gọi giao điểm của HE và AD là O
=> HO = OE
=> AO là đường trung tuyến của HE(2)
Từ 1 và 2
=> OA là đường trung trực của HE
Hay Ad là đường trung trực của HE
=> đpcm

Câu 3: 

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

EB chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó;ΔABE=ΔHBE

b: Ta có: BA=BH

EA=EH

Do đó: BE là đường trung trực của AH

c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đó: ΔAEK=ΔHEC

Suy ra:EK=EC

d: Ta có: AE=EH

mà EH<EC
nên AE<EC

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

29 tháng 10 2019

B A C D K H I

a ) Xét \(\Delta AHB\) vuông tại H ta có :

\(\widehat{HBA}+\widehat{HAB}=90^o\) ( hai góc phụ nhau )

\(\widehat{HAB}=90^o-\widehat{HBA}=90^o-60^o=30^o\)

Vậy \(\widehat{HAB}=60^o\)

b ) Xét \(\Delta AHI\) và \(\Delta ADI\)có :

AH = AD (gt)

IH=ID (gt)

AI cạnh chung 

\(\Rightarrow\Delta AHI=\Delta ADI\left(c.c.c\right)\)

Suy ra \(\widehat{HIA}=\widehat{DIA}\) ( hai góc tương ứng )

Mà \(\widehat{HIA}+\widehat{DIA}=180^o\) ( 2gocs kề bùy )

\(\Rightarrow\widehat{HIA}=\widehat{DIA}=90^o\)

Do đó \(AI\perp HD\left(đpcm\right)\)

c ) Vì  \(\Delta AHI=ADI\) ( cm câu b )

\(\Rightarrow\widehat{HAK}=\widehat{DAK}\) ( 2 góc tương ứng )

Xét \(\Delta AHK\) và \(\Delta ADK\) có ;

AH = AD (gt)

\(\widehat{HAK}=\widehat{DAK}\left(cmt\right)\)

AK cạn chung

\(\Rightarrow\Delta AHK=\Delta ADK\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHK}=\widehat{ADK}=90^o\) ( 2 góc tương ứng )

\(\Rightarrow AD\perp AC\)

Mà \(BA\perp AC\left(\Delta ABC\perp A\right)\)

AD//AB ( đpcm)

15 tháng 1 2017

A B C H I E D

ta có \(\widehat{ABH}+\widehat{HAB}=90^o\)( tam giác HAB vuông tại H )

và \(\widehat{HAB}+\widehat{HAC}=90^o\left(gt\right)\)

suy ra \(\widehat{ABH}=\widehat{HAC}\)( vì cùng phụ với HAB )

b)    xét \(\Delta IAH \)và \(\Delta ICE\)

IA = IC (gt)

IH =IE (gt)

góc HIA = góc EIC ( đối đỉnh )

do đó \(\Delta IAH=\Delta ICE\left(c.g.c\right)\)

suy ra AH = EC ( 2 cạnh tương ứng )

và \(\widehat{HAI}=\widehat{ECA}\)(2 góc tương ứng )

xét \(\Delta HAC\)và \(\Delta ECA\)

AH = EC (cmt)

góc HAI = góc ECA (cmt)

AC là cạnh chung

do đó \(\Delta HAC=\Delta ECA\left(c.g.c\right)\)

suy ra \(\widehat{AHC}=\widehat{CEA}\)(2 góc tương ứng)

mà \(\widehat{AHC}=90^o\Rightarrow\widehat{CEA}=90^o\)

hay \(CE⊥AE\)

24 tháng 12 2016

đề bài câu d bị sai thì phải

24 tháng 12 2016

câu d đề sai hoàn toàn

Giải Giúp MK Mấy Bài Hình Thôi Nha. 1/ Cho \(\Delta\)ABC có 3 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB. Trên tia đối của tia AC lấy điểm E sao cho AE=AC. a, Chứng minh \(\Delta ABC=\Delta ADE\) b, Chứng minh: BC//ED c, Từ E kẻ EH vuông góc với BD ( H \(\in\) BD). Trên tia đối của HE lấy điểm F sao cho HF = HE. Chứng minh AF = AC. 2/ Cho \(\Delta\) ABC có AB = AC, gọi H là trung điểm của BC. a, Chứng...
Đọc tiếp

Giải Giúp MK Mấy Bài Hình Thôi Nha.

1/ Cho \(\Delta\)ABC có 3 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB. Trên tia đối của tia AC lấy điểm E sao cho AE=AC.

a, Chứng minh \(\Delta ABC=\Delta ADE\)

b, Chứng minh: BC//ED

c, Từ E kẻ EH vuông góc với BD ( H \(\in\) BD). Trên tia đối của HE lấy điểm F sao cho HF = HE. Chứng minh AF = AC.

2/ Cho \(\Delta\) ABC có AB = AC, gọi H là trung điểm của BC.

a, Chứng minh \(\Delta AHB=\Delta AHC.\)

b, Chứng minh AH là tia phân giác của góc BAC.

c, Vẽ điểm K thuộc AH, đường thẳng CK cắt AB tại M. Vẽ MN vuông góc cới BC tại N. Chứng minh: \(\widehat{BAC = 2.}\widehat{BMN}\)

3/ Cho \(\Delta\) ABC vuông tại A (AB<AC). Tia phân giác của góc ABC cắt AC ở D. Trên cạnh BC lấy điểm K sao cho AB = KB.

a, Chứng Minh: \(\Delta ABD=\Delta KBD\)

b, Vẽ AH vuông góc với BC tại H. Chứng minh: AH//DK

c, Trên tia DK lấy điểm E sao cho AH=DE. Gọi M là trung điểm HD. Chứng minh: Ba diểm A,M,E thẳng hàng.

4/ Cho \(\Delta\) ABC vuông tại A. Phân giác của góc A cắt BC tại D, D \(\in\) BC. Trên cạnh AC lấy điểm E sao cho AB=AE.

a, Chứng minh \(\Delta ABD=\Delta AED\)

b, Tính góc AED

c, Qua B kẻ đường song song với DE cắt AC tại F, F\(\in\) AC. Chứng minh BF\(\perp\) AC.

GIÚP MÌNH ĐI. LÀM ĐƯỢC BÀI NÀO THÌ LÀM. MAI KT RỒI.

Vũ Minh Tuấn, Băng Băng 2k6 và 1 số người nữa........

2
23 tháng 12 2019

1)

a) Xét 2 \(\Delta\) \(ABC\)\(ADE\) có:

\(AB=AD\left(gt\right)\)

\(\widehat{BAC}=\widehat{DAE}\) (vì 2 góc đối đỉnh)

\(AC=AE\left(gt\right)\)

=> \(\Delta ABC=\Delta ADE\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta ABC=\Delta ADE.\)

=> \(\widehat{ABC}=\widehat{ADE}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(BC\) // \(ED.\)

c) Xét 2 \(\Delta\) vuông \(AEH\)\(AFH\) có:

\(\widehat{AHE}=\widehat{AHF}\left(=90^0\right)\)

\(EH=FH\left(gt\right)\)

Cạnh AH chung

=> \(\Delta AEH=\Delta AFH\) (hai cạnh góc vuông tương ứng bằng nhau).

=> \(AE=AF\) (2 cạnh tương ứng).

\(AE=AC\left(gt\right)\)

=> \(AF=AC\left(đpcm\right).\)

Chúc bạn học tốt!

23 tháng 12 2019

3:

Xét ΔABD và ΔKBD ta có:

BK = AB (gt)

\(\widehat{ABD}=\widehat{DBK}\) (DB là phân giác của góc ABC)

BD: cạnh chung

=> ΔABD = ΔKBD (c - g - c)

b/ Có ΔABD = ΔKBD (câu a)

=> \(\widehat{DKB}=\widehat{DAB}=90^0\) (2 góc tương ứng)

=> \(DK\perp BC\) (1)

Lại có AH ⊥ BC (gt) (2)

Từ (1) và (2)

=> DK // AH

P/s: Mik làm đến đây thôi vì phải ôn bài nữa!