Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\left(13\dfrac{1}{4}-1\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{7}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
\(=\dfrac{1\dfrac{25}{108}.230\dfrac{1}{25}+46\dfrac{3}{4}}{4\dfrac{16}{21}:\left(-1\dfrac{20}{21}\right)}=\dfrac{330\dfrac{1}{25}}{-2\dfrac{18}{41}}=-135,3164\)
Bạn tính hai vế à.!? Hay tính vế thứ nhất rồi với vế thứ 2.!???
Bài 2:
a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
=> a = b = c
b)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
=> x = y = z (theo a)
Thay x = y = z vào biểu thức, ta có:
\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)
c)
\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)
Thay a = b = c vào biểu thức, ta có:
\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)
a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
Vì \(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}>\dfrac{1}{14}\) nên \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}>0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
Chúc bạn học tốt!!!
Giải:
a) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Leftrightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Leftrightarrow x+1\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
Dấu "=" xảy ra:
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}=0\end{matrix}\right.\)
Vì \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)
\(\Rightarrow x+1=0\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
b) \(\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\left(\dfrac{1}{3}-\dfrac{2}{9}\right)+\left(-\dfrac{3}{4}-\dfrac{1}{36}\right)+\left(\dfrac{3}{5}+\dfrac{1}{15}\right)+\dfrac{1}{64}\)
\(=\left(\dfrac{3}{9}-\dfrac{2}{9}\right)+\left(-\dfrac{27}{36}-\dfrac{1}{36}\right)+\left(\dfrac{9}{15}+\dfrac{1}{15}\right)+\dfrac{1}{64}\)
\(=\dfrac{1}{9}-\dfrac{7}{9}+\dfrac{2}{3}+\dfrac{1}{64}=0+\dfrac{1}{64}=\dfrac{1}{64}\)
Chúc bạn học tốt!
\(b.\)
Theo đề : \(2x=3y=5z\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\) và \(x+y-x=95\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
\(\Rightarrow x=75;y=50;z=30\)
\(d.\)
Đặt : \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
\(\Rightarrow x=2k;y=5k\)
Thay \(x=2k;y=5k\) vào \(xy=90\)
\(\left(2k\right)\left(5k\right)=90\)
\(\Rightarrow10k^2=90\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
+ Nếu \(k=3\Rightarrow x=6;y=15\)
+ Nếu \(k=-3\Rightarrow x=-6;y=-15\)
\(e.\)
Tương tự với câu \(d\)
\(\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}\)\(=\dfrac{x}{15}\cdot\dfrac{15}{\left(x+2\right)\left(x+17\right)}\) \(\dfrac{1}{x+2}-\dfrac{1}{x+17}\)\(=\dfrac{x}{15}\cdot\left(\dfrac{1}{x+2}-\dfrac{1}{x+17}\right)\)
\(\dfrac{x}{15}=\left(\dfrac{1}{x+2}-\dfrac{1}{x+17}\right):\left(\dfrac{1}{x+2}-\dfrac{1}{x+17}\right)\)
\(\dfrac{x}{15}=1\)
\(x=15\cdot1\)
\(x=15\)
a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Leftrightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy x = -1
b, \(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
\(\Leftrightarrow\left(\dfrac{x+4}{2014}+1\right)+\left(\dfrac{x+3}{2015}+1\right)=\left(\dfrac{x+2}{2016}+1\right)+\left(\dfrac{x+1}{2017}+1\right)\)\(\Leftrightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)
\(\Leftrightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}-\dfrac{x+2018}{2016}-\dfrac{x+2018}{2017}=0\)
\(\Leftrightarrow\left(x+2018\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\)
\(\Leftrightarrow xx+2018=0\Leftrightarrow x=-2018\)
Vậy x = -2018
Nguyễn Huy Tú, cho mk hỏi sao câu a bt đó lại bằng 0 vậy ? Mk ko hiểu lắm