Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)=\frac{1}{\left(x+y\right)^3}.\frac{\left(y^2+x^2\right)\left(x+y\right)\left(y-x\right)}{x^4y^4}=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}\)
\(B=\frac{1}{\left(x+y\right)^4}.\left(\frac{1}{x^3}-\frac{1}{y^3}\right)=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x+y\right)^4x^3y^3}\)
\(C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)=\frac{y-x}{\left(x+y\right)^4x^2y^2}\)
\(\Rightarrow A+B+C=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}+\frac{\left(y-x\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)^4x^3y^3}+\frac{\left(y-x\right)}{\left(x+y\right)^4x^2y^2}\)
\(=\frac{y^3-x^3}{x^4y^4\left(x+y\right)^2}\)
b/ Thế vô rồi tính nhé
Đoạn gần cuối thay y-x= 1 luôn
\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2x^4y^4}+\left(\frac{\left(x+y\right)^2}{\left(x+y\right)^4\left(xy\right)^3}\right)\\ \)
\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2\left(xy\right)^4}+\frac{1}{\left(x+y\right)^2\left(xy\right)^3}\)
\(A+B+C=\frac{x^2+y^2+xy}{\left[\left(x+y\right)xy\right]^2\left(xy\right)^2}\) giờ mới thay không biết đã tối giản chưa
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
Bài 2:
a) ĐK: $x\geq \pm \frac{1}{2}; x\neq 0$
\(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}=\frac{(2x+1)^2-(2x-1)^2}{(2x-1)(2x+1)}.\frac{10x-5}{4x}\)
\(\frac{4x^2+4x+1-(4x^2-4x+1)}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}=\frac{8x}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}\)
\(=\frac{10}{2x+1}\)
b) ĐK : $x\neq 0;-1$
\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)=\left(\frac{1}{x(x+1)}-\frac{x(2-x)}{x(x+1)}\right):\frac{1+x^2-2x}{x}\)
\(=\frac{1-2x+x^2}{x(x+1)}.\frac{x}{1+x^2-2x}=\frac{x}{x(x+1)}=\frac{1}{x+1}\)
Bài 3:
a) ĐKXĐ: \(x\neq \pm 1\)
b)
\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
\(=\left[\frac{(x+1)^2}{2(x-1)(x+1)}+\frac{6}{2(x-1)(x+1)}-\frac{(x+3)(x-1)}{2(x+1)(x-1)}\right].\frac{4(x^2-1)}{5}\)
\(=\frac{(x+1)^2+6-(x^2+2x-3)}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}\)
\(=\frac{10}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}=4\)
a) Ta có: \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{7x}{8}-5x+45-\frac{20x+1,5}{6}=0\)
\(\Leftrightarrow\frac{21x}{24}-\frac{120x}{24}+\frac{1080}{24}-\frac{4\left(20x+1,5\right)}{24}=0\)
\(\Leftrightarrow-99x+1080-4\left(20x+1,5\right)=0\)
\(\Leftrightarrow-99x+1080-80x-6=0\)
\(\Leftrightarrow1074-179x=0\)
\(\Leftrightarrow179x=1074\)
hay x=6
Vậy: x=6
b) Ta có: \(4\left(0,5-1,5x\right)=-\frac{5x-6}{3}\)
\(\Leftrightarrow2-6x=\frac{6-5x}{3}\)
\(\Leftrightarrow\frac{3\left(2-6x\right)}{3}-\frac{6-5x}{3}=0\)
\(\Leftrightarrow6-18x-6+5x=0\)
\(\Leftrightarrow-13x=0\)
mà -13≠0
nên x=0
Vậy: x=0
c) Ta có: \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{30\left(-x+4\right)}{30}-\frac{10x}{30}+\frac{15\left(x-2\right)}{30}=0\)
\(\Leftrightarrow6\left(x+4\right)+30\left(4-x\right)-10x+15\left(x-2\right)=0\)
\(\Leftrightarrow6x+24+120-30x-10x+15x-30=0\)
\(\Leftrightarrow-19x+114=0\)
\(\Leftrightarrow-19x=-114\)
hay x=6
Vậy: x=6
d) Ta có: \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{21\left(4x+3\right)}{105}-\frac{15\left(6x-2\right)}{105}-\frac{35\left(5x+4\right)}{105}-\frac{315}{105}=0\)
\(\Leftrightarrow84x+63-90x+30-175x-140-315=0\)
\(\Leftrightarrow-181x-362=0\)
\(\Leftrightarrow-181x=362\)
hay x=-2
Vậy: x=-2
e) Ta có: \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right)-\frac{1}{3}\left(x+2\right)\)
\(\Leftrightarrow\frac{x+3}{4}=3-\frac{x+1}{2}-\frac{x+2}{3}\)
\(\Leftrightarrow\frac{3\left(x+3\right)}{12}-\frac{36}{12}+\frac{6\left(x+1\right)}{12}+\frac{4\left(x+2\right)}{12}=0\)
\(\Leftrightarrow3x+9-36+6x+6+4x+8=0\)
\(\Leftrightarrow13x-13=0\)
\(\Leftrightarrow13x=13\)
hay x=1
Vậy: x=1