Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
có |x-2017|luôn\(\ge0\forall x\in Q\)
cũng có |-1|luôn\(\ge0\forall x\in Q\)
=>I x-2017 I + I x-1 I\(\ge0\forall x\in Q\)
=> I x-2017 I + I x-1 I=|x-2017|+|1-x|=|x-2017+1-x|=2016
dấu''='' xảy ra <=>(x-2017)(1-x)=0
TH1:
=>\(\orbr{\begin{cases}x-2017\ge0\\1-x\le0\end{cases}}\)
TH2:
=> \(\orbr{\begin{cases}x-2017\le0\\1-x\ge0\end{cases}}\)
tự làm típ ! xét 2 TH thấy cái nào mà nó vô lí thì đánh vô lí chọn TH còn lại nhé !
a) Ta có: A = |x + 1| + |x - 2009|
=> A = |x + 1| + |2009 - x| \(\ge\)|x + 1 + 2009 - x| = |2010| = 2010
Dấu "=" xảy ra <=> (x + 1)(2009 - x) \(\ge\)0
<=> \(-1\le x\le2009\)
Vậy MinA = 2010 khi \(-1\le x\le2009\)
b) Ta có: 2n - 1 = 2(n - 4) + 7
Do 2(n - 4) \(⋮\)n - 4 => 7 \(⋮\)n - 4
=> n - 4 \(\in\)Ư(7) = {1; -1; 7; -7}
Lập bảng:
n - 4 | 1 | -1 | 7 | -7 |
n | 5 | 3 | 11 | -3 |
Vậy ....
a) Ta có A = |x + 1| + |x - 2009|
= |x + 1| + |2009 - x| \(\ge\left|x+1+2009-x\right|=2010\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1\ge0\\2009-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le2009\end{cases}\Rightarrow1\le x\le2009}\)
b) Để 2n - 1 \(⋮\)n - 4
=> 2n - 8 + 7 \(⋮\)n - 4
=> 2(n - 4) + 7 \(⋮\)n - 4
Vì 2(n - 4) \(⋮\)n - 4
=> 7 \(⋮\)n - 4
=> \(n-4\inƯ\left(7\right)\Rightarrow n-4\in\left\{\pm1;\pm7\right\}\)
Lập bảng xét các trường hợp :
n - 4 | 1 | -1 | 7 | -7 |
n | 5 | 3 | 11 | -3 |
Vậy \(n\in\left\{-3;3;5;11\right\}\)
\(\left|x+1,5\right|\ge0\forall x\)
Dấu " = " xảy ra khi
| x + 1,5 | = 0
x = -1,5
Vậy MinA = 0 <=> x = -1,5
b)
\(\left|x-2\right|\ge0\forall x\Rightarrow\left|x-2\right|-\frac{9}{10}\ge\frac{9}{10}\forall x\)
Dấu " = " xảy ra khi
| x - 2 | = 0
x = 2
Vậy MinA = \(\frac{9}{10}\)<=> x = 2
\(-\left|2x-1\right|\le0\forall x\)
Dấu " = " xảy ra khi :
- | 2x - 1 | = 0
=> x = \(\frac{1}{2}\)
Vậy MaxA = 0 <=> x = \(\frac{1}{2}\)
b)
\(-\left|5x-3\right|\le0\forall x\Rightarrow4-\left|5x-3\right|\le4\)
Dấu " = " xảy ra khi :
- | 5x - 3 | = 0
=> x = \(\frac{3}{5}\)
Vậy MaxB = 4 <=> x = \(\frac{3}{5}\)
Study well
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
a, vì (x-1)^2 >/ 0 với mọi x
(y-1)^2 >/ 0 với mọi y
=>(x-1)^2+(y-1)^2 >/ 0 với mọi x,y
=>(x-1)^2+(y-1)^2+3 >/ 3
Do đó Amax=3
Dấu "=" xảy ra<=>(x-1)^2=0<=>x=1
(y-1)^2 =0<=>y=1
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2009\right|+\left|x-1\right|=\left|x-2009\right|+\left|1-x\right|\)
\(\ge\left|x-2009+1-x\right|=2008\)
Dấu "=" khi \(1\le x\le2009\)
Vậy \(Min_A=2008\) khi \(1\le x\le2009\)
BĐT là j ạ