Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}|x|\ge0\\|y|\ge0\end{cases}\forall x;y}\)
Vì x;y là số nguyên nên x, y>0
Theo bài ra ta có:x=6y(1)
=> x-y=60(2)
(1)(2) => 6y-y=60
=> 5y=60
=> y=12
=> x=12 x 6=72
Vậy x=72; y=12
Cho x, y là các số nguyên thoả mãn \(\left(1\right)\)
Theo bài ra ra thấy:
\(159\) và \(3x\) đều \(⋮\) \(3\)
\(\Rightarrow17y⋮3\Rightarrow y⋮3\)
Cho y = 3t (\(t\in Z\))
Thay vào \(\left(1\right)\), ta được:
\(3x+17.3t=159\)
\(\Leftrightarrow x+17t=53\)
\(\Rightarrow x=53-17t\)
\(\Rightarrow\left\{{}\begin{matrix}x=53-17t\\y=3t\end{matrix}\right.\left(t\in Z\right)\)
Vậy 1 có vô số \(\left(x,y\right)\in Z\) được tạo ra bởi:
\(\Rightarrow\left\{{}\begin{matrix}x=53-17t\\y=3t\end{matrix}\right.\left(t\in Z\right)\)
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)