Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B3;a,ĐKXĐ:\(x\ne\pm4\)
A=\(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right)\dfrac{x^2+8x+16}{32}=\left(\dfrac{4x+16}{x^2-16}-\dfrac{4x-16}{x^2-16}\right)\dfrac{x^2+2.4x+4^2}{32}=\left(\dfrac{4x+16-4x+16}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\left(\dfrac{32}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\dfrac{32\left(x+4\right)^2}{32.\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\\ \\ \\ \\ \\ \\ b,Tacó\dfrac{x+4}{x-4}=\dfrac{1}{3}\Leftrightarrow3x+12=x-4\Leftrightarrow x=-8\left(TM\right)c,TAcó\dfrac{x+4}{x-4}=3\Leftrightarrow x+4=3x-12\Leftrightarrow x=8\left(TM\right)\)
1)
a) \(5x\left(x^2-3x+\dfrac{1}{5}\right)\)
\(=5x^3-15x^2+x\)
b) \(\left(x-3\right)\left(2x-1\right)\)
\(=2x^2-x-6x+3\)
\(=2x^2-7x+3\)
2)
a) \(3x^2-15xy\)
\(=3x\left(x-5y\right)\)
b) \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3-y\right)\left(x-3+y\right)\)
c) \(x^2+3x+2\)
\(=\left(x^2+x\right)+\left(2x+2\right)\)
\(=x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x+2\right)\)
bài 4
vì x2+1 >0 với mọi x , do đó GT của Q luôn xác định với mọi x
Q=\(\dfrac{2x^2-4x+5}{x^2+1}=\dfrac{\left(3x^2+3\right)+\left(2x^2-4x+2\right)}{x^2+1}\)=\(\dfrac{3\left(x^2+1\right)+2\left(x-1\right)^2}{x^2+1}=\dfrac{3\left(x^2+1\right)}{x^2+1}+\dfrac{2\left(x-1\right)^2}{x^2+1}\)=\(3+\dfrac{2\left(x-1\right)^2}{x^2+1}\)
Do (x-1)2 ≥ 0
=>2(x-1)2 ≥ 0
x2+1 ≥ 0
=>\(\dfrac{2\left(x-1\right)^2}{x^2+1}\ge0\)
=>\(3+\dfrac{2\left(x-1\right)^2}{x^2+1}\ge3\)
=> Q ≥ 3
=>GTNN của Q =3 khi
x-1=0
=>x=1
Vậy GTNN của Q =3 khi x=1
a,ĐK: \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)
c, Với x = 4 thỏa mãn ĐKXĐ thì
\(A=\frac{-3}{4-3}=-3\)
d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)
\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)
Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)
2)
để \(B=\dfrac{x^2-9}{x^2-6x+9}=0\)
\(\Rightarrow x^2-9=0\)
\(\Rightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy x=3 hoặc x=-3 để B=0
bài a) \(\left(\dfrac{x}{x+1}+\dfrac{x-1}{x}\right):\left(\dfrac{x}{x+1}-\dfrac{x-1}{x}\right)\)
= \(\dfrac{x.x+\left(x-1\right)\left(x+1\right)}{\left(x+1\right)x}:\dfrac{x.x-\left(x-1\right)\left(x+1\right)}{\left(x+1\right)x}\)
= \(\dfrac{x^2+x^2-1}{\left(x+1\right)x}:\dfrac{x^2-\left(x^2-1\right)}{\left(x+1\right)x}\) = \(\dfrac{2x^2-1}{\left(x+1\right)x}:\dfrac{1}{\left(x+1\right)x}\)
= \(\dfrac{2x^2-1}{\left(x+1\right)x}.\left(x+1\right)x\) = \(2x^2-1\)
bài 2) ta có mỗi biểu thức sau bằng 0
a) \(\Leftrightarrow\) \(\dfrac{5}{x-2}-\dfrac{1}{x+2}+\dfrac{4}{x^2}=0\)
\(\Leftrightarrow\) \(\dfrac{5\left(x+2\right)-\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{4}{x^2}=0\)
\(\Leftrightarrow\)\(\dfrac{5x+10-x+2}{x^2-4}+\dfrac{4}{x^2}=0\)
\(\Leftrightarrow\) \(\dfrac{5x^2-x+12}{x^2-4}+\dfrac{4}{x^2}=0\)
\(\Leftrightarrow\) \(\dfrac{\left(5x^2-x+12\right)x^2+4\left(x^2-4\right)}{\left(x^2-4\right)x^2}=0\)
\(\Leftrightarrow\) \(\dfrac{5x^4-x^3+12x^2+4x^2-16}{x^4-4x^2}=0\)
Bài 1:
a) \(x\ne2\)
Bài 2:
a) \(x\ne0;x\ne5\)
b) \(\dfrac{x^2-10x+25}{x^2-5x}=\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}=\dfrac{x-5}{x}\)
c) Để phân thức có giá trị nguyên thì \(\dfrac{x-5}{x}\) phải có giá trị nguyên.
=> \(x=-5\)
Bài 3:
a) \(\left(\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right)\cdot\left(\dfrac{4x^2-4}{5}\right)\)
\(=\left(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right)\cdot\dfrac{2\left(2x^2-2\right)}{5}\)
\(=\dfrac{\left(x+1\right)^2+6-\left(x-1\right)\left(x+3\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2\cdot2\left(x^2-1\right)}{5}\)
\(=\dfrac{\left(x+1\right)^2+6-\left(x^2+3x-x-3\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2\left(x-1\right)\left(x+1\right)}{5}\)
\(=\left[\left(x+1\right)^2+6-\left(x^2+2x-3\right)\right]\cdot\dfrac{2}{5}\)
\(=\left[\left(x+1\right)^2+6-x^2-2x+3\right]\cdot\dfrac{2}{5}\)
\(=\left[\left(x+1\right)^2+9-x^2-2x\right]\cdot\dfrac{2}{5}\)
\(=\dfrac{2\left(x+1\right)^2}{5}+\dfrac{18}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
\(=\dfrac{2\left(x^2+2x+1\right)}{5}+\dfrac{18}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
\(=\dfrac{2x^2+4x+2}{5}+\dfrac{18}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
\(=\dfrac{2x^2+4x+2+18}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
\(=\dfrac{2x^2+4x+20}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
c) tự làm, đkxđ: \(x\ne1;x\ne-1\)
ô hô ngộ quá nhìu người bt toán lớp 8 trong khi lớp 7 với lại óc nguyow trở lại r kaka
Bài 1 rút gọn bc tự làm :
\(B=\dfrac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
\(B=\dfrac{3x^3-3y^2-4y^2+4y+y-1}{2y^3-2y^2+y^2-y+3y-3}\)
\(B=\dfrac{3y^2\left(y-1\right)-4y\left(y-1\right)+\left(y-1\right)}{2y^2\left(y-1\right)+y\left(y-1\right)-3\left(y-1\right)}\)
\(B=\dfrac{\left(3y^2-4y+1\right)\left(y-1\right)}{\left(2y^2+y-3\right)\left(y-1\right)}\)
\(B=\dfrac{3y^2-3y-y+1}{2y^2-2y+3y-3}=\dfrac{3y\left(y-1\right)-\left(y-1\right)}{2y\left(y-1\right)+3\left(y-1\right)}\)
\(B=\dfrac{\left(3y-1\right)\left(y-1\right)}{\left(3y+2\right)\left(y-1\right)}=\dfrac{3y-1}{3y+2}\)
Bài 2 )
a ) \(x+\dfrac{1}{x}=3\)
\(\Leftrightarrow x^2+2x\dfrac{1}{x}+\dfrac{1}{x^2}=9\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}=1\)
b ) \(\left(x+\dfrac{1}{x}\right)^3=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+\dfrac{3}{x}+3x=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3\left(\dfrac{1}{x}+x\right)=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}=18\)
Bài 3:
a: ĐKXĐ: x<>2
b: \(M=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)
c: Khi x=4001/2000 thì \(M=\dfrac{3}{\dfrac{4001}{2000}-2}=3:\dfrac{1}{2000}=6000\)