K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

a) \(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)

\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}=\dfrac{x+100}{96}+\dfrac{x+100}{95}\)

\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)

\(\Rightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)

\(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\ne0\) nên \(x+100=0\Leftrightarrow x=-100\)

b) \(\dfrac{x+1}{1998}+\dfrac{x+2}{1997}=\dfrac{x+3}{1996}+\dfrac{x+4}{1995}\)

\(\Rightarrow\dfrac{x+1}{1998}+1+\dfrac{x+2}{1997}+1=\dfrac{x+3}{1996}+1+\dfrac{x+4}{1995}+1\)

\(\Rightarrow\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}=\dfrac{x+1999}{1996}+\dfrac{x+1999}{1995}\)

\(\Rightarrow\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}-\dfrac{x+1999}{1996}-\dfrac{x+1999}{1995}=0\)

\(\Rightarrow\left(x+1999\right)\left(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\right)=0\)

\(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\ne0\) nên \(x+1999=0\Leftrightarrow x=-1999\)

c) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)

\(\Rightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)

\(\Rightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)

\(\Rightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

\(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\ne0\) nên \(300-x=0\Leftrightarrow x=300\)

8 tháng 2 2018

h.

\(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)

\(\Leftrightarrow\dfrac{2-x}{2002}+1-2=\dfrac{1-x}{2003}+1+1-\dfrac{x}{2004}-2\)

\(\Leftrightarrow\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)

\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)

Vì: \(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\ne0\)

Suy ra: 2004 - x = 0

Vậy x = 2004

8 tháng 2 2018

\(a,\dfrac{x-23}{24}+\dfrac{x-23}{25}=\dfrac{x-23}{26}+\dfrac{x-23}{27}\)

\(\Leftrightarrow\dfrac{x-23}{24}+\dfrac{x-23}{25}-\dfrac{x-23}{26}-\dfrac{x-23}{27}=0\)

\(\Leftrightarrow\left(x-23\right)\left(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\right)=0\)

\(\Leftrightarrow x-23=0\) ( vì \(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\ne0\) )

\(\Leftrightarrow x=23\)

Vậy pt có tập nghiệm S = { 23 }

\(b,\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)

\(\Leftrightarrow\dfrac{x+2+98}{98}+\dfrac{x+3+97}{97}-\dfrac{x+4+96}{96}-\dfrac{x+5+95}{95}=0\)

\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)

\(\Leftrightarrow x+100=0\)

\(\Leftrightarrow x=-100\)

Vậy pt có tập nghiệm S = { 100 }

\(c,\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\)

\(\Leftrightarrow\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)

\(\Leftrightarrow\dfrac{x+1+2004}{2004}+\dfrac{x+2+2003}{2003}-\dfrac{x+3+2002}{2002}-\dfrac{x+4+2001}{2001}=0\)

\(\Leftrightarrow\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}-\dfrac{x+2005}{2002}-\dfrac{x+2005}{2001}=0\)

\(\Leftrightarrow\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)=0\)

\(\Leftrightarrow x+2005=0\)

\(\Leftrightarrow x=-2005\)

Vậy pt có tập nghiệm S = { 2005 }

\(d,\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)

\(\Leftrightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)

\(\Leftrightarrow\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}+\dfrac{205-x+95}{95}=0\)

\(\Leftrightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

\(\Leftrightarrow300-x=0\)

\(\Leftrightarrow x=300\)

Vậy pt có tập nghiệm S = { 300 }

\(e,\dfrac{x-45}{55}+\dfrac{x-47}{53}=\dfrac{x-55}{45}+\dfrac{x-53}{47}\)

\(\Leftrightarrow\dfrac{x-45}{55}-1+\dfrac{x-47}{53}-1=\dfrac{x-55}{45}-1+\dfrac{x-53}{47}-1\)

\(\Leftrightarrow\dfrac{x-45-55}{55}+\dfrac{x-47-53}{53}-\dfrac{x-55-45}{45}-\dfrac{x-53-47}{47}=0\)

\(\Leftrightarrow\dfrac{x-100}{55}+\dfrac{x-100}{53}-\dfrac{x-100}{45}-\dfrac{x-100}{47}=0\)

\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\right)=0\)

\(\Leftrightarrow x-100=0\)

\(\Leftrightarrow x=100\)

Vậy pt có tập nghiệm S = { 100 }

\(f,\dfrac{x+1}{9}+\dfrac{x+2}{8}=\dfrac{x+3}{7}+\dfrac{x+4}{6}\)

\(\Leftrightarrow\dfrac{x+1}{9}+1+\dfrac{x+2}{8}+1=\dfrac{x+3}{7}+1+\dfrac{x+4}{6}+1\)

\(\Leftrightarrow\dfrac{x+10}{9}+\dfrac{x+10}{8}-\dfrac{x+10}{7}-\dfrac{x+10}{6}=0\)

\(\Leftrightarrow\left(x+10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}-\dfrac{1}{7}-\dfrac{1}{6}\right)=0\)

\(\Leftrightarrow x+10=0\)

\(\Leftrightarrow x=-10\)

Vậy pt có tập nghiệm S = { 10 }

\(h,\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)

\(\Leftrightarrow\dfrac{2-x}{2002}=\dfrac{1-x}{2003}+\dfrac{-x}{2004}+1\)

\(\Leftrightarrow\dfrac{2-x}{2002}+1=\dfrac{1-x}{2003}+1+\dfrac{-x}{2004}+1\)

\(\Leftrightarrow\dfrac{2-x+2002}{2002}-\dfrac{1-x+2003}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)

\(\Leftrightarrow2004-x=0\)

\(\Leftrightarrow x=2004\)

Vậy pt có tập nghiệm S = { 2004 }

\(g,\dfrac{x+2}{98}+\dfrac{x+4}{96}=\dfrac{x+6}{94}+\dfrac{x+8}{92}\)

\(\Leftrightarrow\dfrac{x+2}{98}+1+\dfrac{x+4}{96}+1=\dfrac{x+6}{94}+1+\dfrac{x+8}{92}+1\)

\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{96}-\dfrac{x+100}{94}-\dfrac{x+100}{92}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{96}-\dfrac{1}{94}-\dfrac{1}{92}\right)=0\)

\(\Leftrightarrow x+100=0\)

\(\Leftrightarrow x=-100\)

Vậy pt có tập nghiệm S = { -100 }

8 tháng 2 2018

a.

\(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)

\(\Leftrightarrow\dfrac{x+1}{2}+\dfrac{x+3}{4}=3-\dfrac{x+2}{3}\)

\(\Leftrightarrow\dfrac{\left(x+1\right).6}{12}+\dfrac{\left(x+3\right).3}{12}=\dfrac{36}{12}-\dfrac{\left(x+2\right).4}{12}\)

\(\Leftrightarrow6x+6+3x+9=36-4x-8\)

\(\Leftrightarrow9x+15=28-4x\)

\(\Leftrightarrow9x+4x=28-15\)

\(\Leftrightarrow13x=13\)

\(\Leftrightarrow x=1\)

8 tháng 2 2018

a) \(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)

\(\Leftrightarrow\dfrac{6\left(x+1\right)+3\left(x+3\right)}{12}=\dfrac{36-4\left(x+2\right)}{12}\)

\(\Leftrightarrow6\left(x+1\right)+3\left(x+3\right)=36-4\left(x+2\right)\)

\(\Leftrightarrow6x+6+3x+9=36-4x-8\)

\(\Leftrightarrow9x+15=-4x+28\)

\(\Leftrightarrow9x+4x=28-15\)

\(\Leftrightarrow13x=13\)

\(\Leftrightarrow x=1\)

Vậy ................................

Bài 1: Thực hiện phép tính a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\) b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\) c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\) d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\) e,...
Đọc tiếp

Bài 1: Thực hiện phép tính

a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\)

b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\)

c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\)

d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)

e, \(\dfrac{x^3}{x-1}\)-\(\dfrac{x^2}{x+1}\)-\(\dfrac{1}{x-1}\)+\(\dfrac{1}{x+1}\)

f, \(\dfrac{x^3+x^2-2x-20}{x^2-4}\)-\(\dfrac{5}{x+2}\)+\(\dfrac{3}{x-2}\)

g, \(\left\{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}\right\}\).\(\left\{\dfrac{x^2+y^2}{2xy}\right\}\).\(\dfrac{xy}{x^2+y^2}\)

h, \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)+\(\dfrac{1}{\left(b-c\right)\left(c-a\right)}\)+\(\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

i, \(\dfrac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

k, \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left\{\dfrac{x^2}{y}-\dfrac{y^2}{x}\right\}\right]\):\(\dfrac{x-y}{x}\)

Bài 2: Rút gọn các phân thức:

a, \(\dfrac{25x^2-20x+4}{25x^2-4}\)

b, \(\dfrac{5x^2+10xy+5y^2}{3x^3+3y^3}\)

c, \(\dfrac{x^2-1}{x^3-x^2-x+1}\)

d, \(\dfrac{x^3+x^2-4x-4}{x^4-16}\)

e, \(\dfrac{4x^4-20x^3+13x^2+30x+9}{\left(4x^2-1\right)^2}\)

Bài 3: Rút gọn rồi tính giá trị các biểu thức:

a, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\) với a = 4, b = -5, c = 6

b, \(\dfrac{16x^2-40xy}{8x^2-24xy}\) với \(\dfrac{x}{y}\) = \(\dfrac{10}{3}\)

c, \(\dfrac{\dfrac{x^2+xy+y^2}{x+y}-\dfrac{x^2-xy+y^2}{x-y}}{x-y-\dfrac{x^2}{x+y}}\) với x = 9, y = 10

Bài 4: Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên:

a, \(\dfrac{x^3-x^2+2}{x-1}\)

b, \(\dfrac{x^3-2x^2+4}{x-2}\)

c, \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

d, \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)

e, \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)

2
8 tháng 12 2017

Giúp mình nhé mọi người ! leuleu

8 tháng 12 2017

\(1.\)

\(a.\)

\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=x-1\)

\(b.\)

\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)

\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)

\(=\dfrac{2y}{\left(x-y\right)}\)

Tương tự các câu còn lại

6 tháng 3 2018

a)\(\dfrac{201-x}{99}+\dfrac{203-x}{97}=\dfrac{205-x}{95}+3=0\)

<=>\(\left(\dfrac{201-x}{99}+1\right)+\left(\dfrac{203-x}{97}+1\right)+\left(\dfrac{205-x}{95}+1\right)=0\)

<=>\(\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}=\dfrac{205-x+95}{95}=0\)

<=> \(\dfrac{300-x}{99}+\dfrac{300-x}{97}=\dfrac{300-x}{95}=0\)

<=> \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

<=> 300 - x = 0

<=> x = 300

b) \(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)

<=> \(\dfrac{2-x}{2002}+1=\left(\dfrac{1-x}{2003}+1\right)+\left(\dfrac{x}{2004}+1\right)\){Cộng cả hai vế của phương trình với 2}

<=> \(\dfrac{2-x+2002}{2002}=\dfrac{1-x+2003}{2003}+\dfrac{-x+2004}{2004}\)

<=> \(\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)

<=> \(\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)

<=> \(\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)

<=> 2004 - x = 0

<=> x = 2004.

8 tháng 3 2018

ủa câu b

từ hàng 1 đang dấu - xuống hàng 2 thành dấu cộng rồi

\(-\dfrac{x}{2014}\Rightarrow+\left(\dfrac{x}{2014}+1\right)\)

18 tháng 1 2018

a,\(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

<=> \(\dfrac{2-x}{2001}-1+2=\dfrac{1-x}{2002}-\dfrac{x}{2003}+2\)

<=>\(\dfrac{2-x}{2001}+1=\left(\dfrac{1-x}{2002}+1\right)+\left(\dfrac{-x}{2003}+1\right)\)

<=>\(\dfrac{2003-x}{2001}=\dfrac{2003-x}{2002}+\dfrac{2003-x}{2003}\)

<=>\(\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)

<=> \(\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\)

=> \(2003-x=0\)

=> \(x=2003\)

Vậy : S = \(\left\{2003\right\}\)

b, \(\dfrac{2x-3}{97}-\dfrac{2x-4}{96}+\dfrac{2x-5}{95}=\dfrac{2x-6}{94}\)

<=> \(\dfrac{2x-3}{97}-\dfrac{2x-4}{96}=\dfrac{2x-6}{94}-\dfrac{2x-5}{95}\)

<=> \(\dfrac{2x-3}{97}-\dfrac{2x-4}{96}-2=\dfrac{2x-6}{94}-\dfrac{2x-5}{95}-2\)

<=> \(\left(\dfrac{2x-3}{97}-1\right)-\left(\dfrac{2x-4}{96}-1\right)=\left(\dfrac{2x-6}{94}-1\right)-\left(\dfrac{2x-5}{95}-1\right)\)

<=>\(\dfrac{2x-100}{97}-\dfrac{2x-100}{96}=\dfrac{2x-100}{94}-\dfrac{2x-100}{95}\)

<=> \(\dfrac{2x-100}{97}-\dfrac{2x-100}{96}-\dfrac{2x-100}{94}+\dfrac{2x-100}{95}=0\)

<=> \(\left(2x-100\right)\left(\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{94}+\dfrac{1}{95}\right)=0\)

\(\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{94}+\dfrac{1}{95}\ne0\)

=>\(2x-100=0\)

=> \(2x=100\)

=>\(x=50\)

Vậy: S=\(\left\{50\right\}\)

18 tháng 1 2018

Các bạn tick nhiều cho mình nha!

okokok

19 tháng 11 2018

a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)

\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)

19 tháng 11 2018

c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)

Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)

\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)

31 tháng 3 2017

a)\(\dfrac{1}{2}\)(x+1)+\(\dfrac{1}{4}\)(x+3)=3-\(\dfrac{1}{3}\)(x+2)

\(\Leftrightarrow\)\(\dfrac{1}{2}\)x+\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)x+\(\dfrac{3}{4}\)=3-\(\dfrac{1}{3}\)x-\(\dfrac{2}{3}\)

\(\Leftrightarrow\)\(\dfrac{1}{2}\)x+\(\dfrac{1}{4}\)x+\(\dfrac{1}{3}\)x=-\(\dfrac{1}{2}\)-\(\dfrac{3}{4}\)+3-\(\dfrac{2}{3}\)

\(\Leftrightarrow\)\(\dfrac{13}{12}\)x=\(\dfrac{13}{12}\)

\(\Leftrightarrow\)x=1

Vậy nghiệm của pt là x=1

b)\(\dfrac{x+2}{98}\)+\(\dfrac{x+4}{96}\)=\(\dfrac{x+6}{94}\)+\(\dfrac{x+8}{92}\)

\(\Leftrightarrow\)\(\dfrac{x+2}{98}\)+\(\dfrac{x+4}{96}\)-\(\dfrac{x+6}{94}\)-\(\dfrac{x+8}{92}\)=0

\(\Leftrightarrow\)(\(\dfrac{x+2}{98}\)+1)+(\(\dfrac{x+4}{96}\)+1)-(\(\dfrac{x+6}{94}\)+1)-(\(\dfrac{x+8}{92}\)+1)=0

\(\Leftrightarrow\)\(\dfrac{x+2+98}{98}\)+\(\dfrac{x+4+96}{96}\)-\(\dfrac{x+6+94}{94}\)-\(\dfrac{x+8+92}{92}\)=0

\(\Leftrightarrow\)\(\dfrac{x+100}{98}\)+\(\dfrac{x+100}{96}\)-\(\dfrac{x+100}{94}\)-\(\dfrac{x+100}{92}\)=0

\(\Leftrightarrow\)(x+100)(\(\dfrac{1}{98}+\dfrac{1}{96}-\dfrac{1}{94}-\dfrac{1}{92}\))=0

\(\Leftrightarrow\)x+100=0(vì\(\dfrac{1}{98}+\dfrac{1}{96}-\dfrac{1}{94}-\dfrac{1}{92}\)\(\ne\)0)

\(\Leftrightarrow\)x=-100

Vậy nghiệm của pt là x=-100