Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m = 3 vào hệ ,:
\(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\\x+\left(m-1\right)y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4x+2y=6\\x+2y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=4\\x+2y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
b)
\(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\\x+\left(m-1\right)y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}mx-x+y=m\\x+\left(m-1\right)y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\left(x-1\right)-x+y=0\\x+\left(m-1\right)y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=\dfrac{x-y}{x-1}\\x+\left(\dfrac{x-y}{x-1}-1\right)y=2\end{matrix}\right.\)
\(x+\left(\dfrac{x-y}{x-1}-1\right)y=2\)
\(\Rightarrow x+\left(\dfrac{1-y}{x-1}\right)y=2\)
Đây là hệ thức liên hệ độc lập giữa x và y
a) Khi m = 3, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+2y=6\\x+2y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=4\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy nghiệm hệ phương trình \(\left(\dfrac{4}{3};\dfrac{1}{3}\right)\)
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp
a/ \(\Leftrightarrow\left\{{}\begin{matrix}3x-4y=11\\-x-10y=-15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}x+y=8\\\frac{2x}{3}+\frac{x}{4}-\frac{y}{6}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=8\\\frac{11}{12}x-\frac{y}{6}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=8\\11x-2y=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{28}{13}\\y=\frac{76}{13}\end{matrix}\right.\)
1) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)
\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4x+8\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4\sqrt{x}}{2-\sqrt{x}}\)
2) Để \(P=2\)
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=2\)
\(\Leftrightarrow4\sqrt{x}=4-2\sqrt{x}\)
\(\Leftrightarrow6\sqrt{x}=4\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{4}{9}\)
Vậy để \(P=2\Leftrightarrow x=\frac{4}{9}\)
3) Khi \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\2\sqrt{x}-1==0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{4}\left(tm\right)\end{cases}}\)
Thay \(x=\frac{1}{4}\)vào P, ta được :
\(\Leftrightarrow P=\frac{4\sqrt{\frac{1}{4}}}{2-\sqrt{\frac{1}{4}}}=\frac{4\cdot\frac{1}{2}}{2-\frac{1}{2}}=\frac{2}{\frac{3}{2}}=\frac{4}{3}\)
4) Để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
\(\Leftrightarrow8x-4\sqrt{x}=-x-\sqrt{x}+6\)
\(\Leftrightarrow9x-3\sqrt{x}-6=0\)
\(\Leftrightarrow3x-\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=3x-2\)
\(\Leftrightarrow x=9x^2-12x+4\)
\(\Leftrightarrow9x^2-13x+4=0\)
\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}9x-4=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{9}\\x=1\end{cases}}\)
Thử lại ta được kết quá : \(x=\frac{4}{9}\left(ktm\right)\); \(x=1\left(tm\right)\)
Vậy để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\Leftrightarrow x=1\)
5) Để biểu thức nhận giá trị nguyên
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}\inℤ\)
\(\Leftrightarrow4\sqrt{x}⋮2-\sqrt{x}\)
\(\Leftrightarrow-4\left(2-\sqrt{x}\right)+8⋮2-\sqrt{x}\)
\(\Leftrightarrow8⋮2-\sqrt{x}\)
\(\Leftrightarrow2-\sqrt{x}\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)
Ta loại các giá trị < 0
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;6;10\right\}\)
\(\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)
\(\)
b, Ta có : \(\left\{{}\begin{matrix}x^3+y^3=1\left(I\right)\\x^5+y^5=x^2+y^2\left(II\right)\end{matrix}\right.\)
Xét phương trình ( II ) có :
\(x^5+y^5=\left(x^3+y^3\right)\left(x^2+y^2\right)-x^2y^2\left(x+y\right)=x^2+y^2\)
- Thay \(x^3+y^3=1\left(I\right)\) vào phương trình trên ta được :
\(x^2+y^2-x^2y^2\left(x+y\right)=x^2+y^2\)
=> \(x^2y^2\left(x+y\right)=0\)
=> \(\left[{}\begin{matrix}xy=0\\x+y=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}xy=0\\x=-y\end{matrix}\right.\)
TH1 : x = -y
Thay \(x=-y\) vào phương trình ( I ) ta được :
\(\left(-y\right)^3+y^3=1\)
=> 0 = 1 ( ***** )
- TH2 : xy = 0 .
- TH2.1 : x = 0 .
=> \(y=1\)
- TH2.2 : y = 0 .
=> x = 1 .
- TH2.3 : x = 0, y = 0 .
=> 0 + 0 = 1 ( ***** )
Vậy hệ phương trình có 2 nghiệm (x;y) = ( 0;1 ), ( x;y ) = ( 1;0 )
a) Với \(a\ne0,a\ne2\), hệ phương trình có nghiệm duy nhất:\(\left(x;y\right)=\left(\frac{a+1}{a};\frac{1}{a}\right)\)
Từ \(x=\frac{a+1}{a}=1+\frac{1}{a};y=\frac{1}{a}\Rightarrow x-y=1\)
b) Thay \(x=\frac{a+1}{a};y=\frac{1}{a}\) vào \(6x^2-17y=5\) ta được:
\(a^2-5a+6=0\Leftrightarrow\left(a-2\right)\left(a-3\right)=0\Leftrightarrow\left[{}\begin{matrix}a=2\\a=3\end{matrix}\right.\)
Kết hợp với điều kiện \(a\ne2\Rightarrow a=3\left(tm\right)\)
phần 3 lm thế nào vậy