Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\dfrac{2x-1}{x}-\dfrac{x-2}{x-1}< 0\Leftrightarrow\dfrac{x^2-x+1}{x\left(x-1\right)}< 0\)
\(\Leftrightarrow x\left(x-1\right)< 0\Leftrightarrow0< x< 1\)
Xét \(3x^2-4x+m< 0\) trên \(\left(0;1\right)\)
\(\Leftrightarrow m< -3x^2+4x\) trên \(\left(0;1\right)\)
\(\Leftrightarrow m< \max\limits_{\left(0;1\right)}\left(-3x^2+4x\right)\)
Xét \(f\left(x\right)=-3x^2+4x\) trên \(\left(0;1\right)\)
\(a=-3< 0\); \(-\dfrac{b}{2a}=\dfrac{2}{3}\in\left(0;1\right)\) \(\Rightarrow f\left(x\right)_{max}=f\left(\dfrac{2}{3}\right)=\dfrac{4}{3}\)
\(\Rightarrow m< \dfrac{4}{3}\)
Ta có : \(\dfrac{x-1}{x+2}\le1\)
\(\Leftrightarrow\dfrac{x-1-\left(x+2\right)}{x+2}=\dfrac{x-1-x-2}{x+2}=\dfrac{-3}{x+2}\le0\)
\(\Leftrightarrow x+2>0\)
\(\Leftrightarrow x>-2\)
- Ta có hệ BPT : \(\left\{{}\begin{matrix}x>-2\\x\le\dfrac{m-1}{2}\end{matrix}\right.\)
a, - Để HBPT có nghiệm \(\Leftrightarrow\dfrac{m-1}{2}>-2\)
\(\Leftrightarrow\dfrac{m-1+4}{2}=\dfrac{m+3}{2}>0\)
\(\Leftrightarrow m>-3\)
b, Là lạ :vvv
c, Mk nghĩ là vô nghiệm :vvvv
- Để HBPT vô nghiệm <=> \(m\le-3\)
d, Mk nghĩ là có nghiệm đúng với mọi x thuộc R .
- Không tồn tại m thỏa mãn điều kiện :vvvvv
Bài 1:
Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x-2y=-1\\ 2x+y=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-4y=-2\\ 2x+y=2\end{matrix}\right.\)
\(\Rightarrow (2x+y)-(2x-4y)=2-(-2)\)
\(\Leftrightarrow 5y=4\Rightarrow y=\frac{4}{5}\)
\(x=\frac{2-y}{2}=\frac{2-\frac{4}{5}}{2}=\frac{3}{5}\)
Vậy ...........
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} mx-2y=m-2\\ y=m+1-2x\end{matrix}\right.\Rightarrow mx-2(m+1-2x)=m-2\)
\(\Leftrightarrow x(m+4)=3m(*)\)
Để HPT ban đầu có bộ nghiệm (x,y) duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất. Điều này xảy ra khi $m+4\neq 0$ hay $m\neq -4$
Bài 2:
a)
Khi $m=2$ thì hệ trở thành:
\(\left\{\begin{matrix}
x+2y=1\\
2x+y=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
2x+4y=2\\
2x+y=1\end{matrix}\right.\)
\(\Rightarrow (2x+4y)-(2x+y)=2-1\)
\(\Leftrightarrow 3y=1\Rightarrow y=\frac{1}{3}\)
Khi đó: \(x=1-2y=1-2.\frac{1}{3}=\frac{1}{3}\)
Vậy HPT có bộ nghiệm duy nhất $(x,y)=(\frac{1}{3}, \frac{1}{3})$
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} x=1-my\\ mx+y=1\end{matrix}\right.\Rightarrow m(1-my)+y=1\)
\(\Leftrightarrow y(1-m^2)=1-m(*)\)
Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ cũng phải có nghiệm duy nhất. Điều này xảy ra khi \(1-m^2\neq 0\Leftrightarrow m\neq \pm 1\)
Khi đó:
\(y=\frac{1-m}{1-m^2}=\frac{1}{1+m}\)
\(x=1-my=1-\frac{m}{m+1}=\frac{1}{m+1}\)
Vậy HPT có nghiệm \((x,y)=(\frac{1}{m+1}, \frac{1}{m+1})\)
Để \(x,y>0\Leftrightarrow \frac{1}{m+1}>0\Leftrightarrow m>-1\)
Kết hợp những điều vừa tìm được suy ra $m>-1$ và $m\neq 1$ thì thỏa mãn.
2: \(-4x^2+5x-2\)
\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)
\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)
\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)
Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)
Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)
=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)
\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)
\(=16m^2+32m+16+4\left(1-4m^2\right)\)
\(=32m+20\)
Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)
=>32m+20<0
=>32m<-20
=>\(m< -\dfrac{5}{8}\)
\(\left\{{}\begin{matrix}2x-1\ge3x-9\\2-x< 2x-6\\x-3\ge4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3x\ge-9+1\\-x-2x< -6-2\\x\ge4+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x\ge-8\\-3x< -8\\x\ge7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x>\dfrac{8}{3}\\x\ge7\end{matrix}\right.\Leftrightarrow7\le x\le8\)
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}13x>\dfrac{7}{3}\\4x-16< 3x-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{39}\\x< 2\end{matrix}\right.\Leftrightarrow\dfrac{7}{39}< x< 2\)
mà x nguyên
nên x=1
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}2x< 4\\mx>2-m\end{matrix}\right.\)
=>x<2 và mx>2-m
Nếu m=0 thì bất phươg trình vô nghiệm
Nếu m<>0 thì BPT sẽ tương đương với:
\(\left\{{}\begin{matrix}x< 2\\x>\dfrac{2-m}{m}\end{matrix}\right.\)
Để BPT vô nghiệm thì 2-m/m>=2
=>\(\dfrac{2-m}{m}-2>=0\)
=>\(\dfrac{2-m-2m}{m}>=0\)
=>\(\dfrac{3m-2}{m}< =0\)
=>0<m<=2/3