Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}.1\frac{1}{24}.....1\frac{1}{360}\)
\(A=1+\left(\frac{1}{3}.\frac{1}{8}.\frac{1}{15}.\frac{1}{24}.....\frac{1}{360}\right)\)
Nếu đúng thì tk nha
\(B=\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot2}+\frac{1}{2\cdot15}+\frac{13}{15\cdot4}\)
\(B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(\frac{B}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{B}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(\frac{B}{7}=\frac{1}{2}-\frac{1}{28}\)
\(\frac{B}{7}=\frac{13}{28}\)
\(B=\frac{13}{28}.7=\frac{13}{4}\)
\(B=\frac{5}{2}+\left(\frac{4}{1.11}+\frac{3}{11.2}\right)+\left(\frac{1}{2.15}+\frac{13}{15.4}\right)\)
\(B=\frac{5}{2}+\frac{1}{11}.\left(4+\frac{3}{2}\right)+\frac{1}{15}\left(\frac{1}{2}+\frac{13}{4}\right)=\frac{5}{2}+\frac{1}{11}.\frac{11}{2}+\frac{1}{15}.\frac{15}{4}\)
=> \(B=\frac{5}{2}+\frac{1}{2}+\frac{1}{4}=\frac{10}{4}+\frac{2}{4}+\frac{1}{4}=\frac{13}{4}\)
Ta có
1/7.B = 5/2.7 + 4/7.11 + 3/11.14 + 1/14.15 + 13/15.28
1/7.B = 1/2 - 1/7 + 1/7 - 1/11 + 1/11 - 1/14 + 1/14 - 1/15 + 1/15 - 1/28
1/7.B = 1/2 - 1/28
1/7.B = 14/28 - 1/28
1/7.B = 13/28
B = 13/28 : 1/7
B = 13/28 . 7
B = 13/4
#It's the moment when you're in good mood, you accidentally click back =.=
1) Calculate
\(P=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}....1\frac{1}{63}.1\frac{1}{80}\)
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{64}{63}.\frac{81}{80}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{8.8}{7.9}.\frac{9.9}{8.10}\)
\(=\frac{2.9}{10}=\frac{9}{5}\)
ta có: 10010 + 1 > 10010 - 1
⇒ A = \(\frac{100^{10}+1}{100^{10}-1}< \frac{100^{10}+1-2}{100^{10}-1-2}=\frac{100^{10}-1}{100^{10}-3}=B\)
vậy A < B