K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
17 tháng 6 2019

a) \(=x^4-2x^3-3x^2+4x+4+x^2-4x+4\)

\(=x^4-2x^3-2x^2+8\)

\(=x^3\left(x-2\right)-2x\left(x-2\right)-4\left(x-2\right)\)

\(=\left(x^3-2x-4\right)\left(x-2\right)\)

\(=\left[x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\right]\left(x-2\right)\)

\(=\left(x-2\right)^2\left(x^2+2x+2\right)\)

b) \(=x^4-x+2019\left(x^2+x+1\right)\)

\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)\

17 tháng 6 2019

c)\(x^4+2x^3+5x^2+4x-5\\=x^4+x^3+x^3-x^2+x^2+5x^2-x+5x-5\\ =x^2\left(x^2+x-1\right)+x\left(x^2+x-1\right)+5\left(x^2+x-1\right)=\left(x^2+x-1\right)\left(x^2+x+5\right)\)

31 tháng 10 2018

x2 - 5x = 0

=> x(x - 5) = 0

=> \(\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

31 tháng 10 2018

b)  (3x - 5)2 - 4 = 0

=> (3x - 5)2 = 0 + 4

=> (3x - 5)2 = 4

=> (3x - 5)2 = 22

=> \(\orbr{\begin{cases}3x-5=2\\3x-5=-2\end{cases}}\)

=> \(\orbr{\begin{cases}3x=7\\3x=3\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{7}{3}\\x=1\end{cases}}\)

8 tháng 9 2019

Câu a):

ta có (x2-x-2)2+(x-2)2

=((x-2)2(x+1))2+(x-2)2

=(x-2)2(x2+2x+2)

24 tháng 10 2019
https://i.imgur.com/DxE4HlK.jpg
21 tháng 6 2019

\(\left(x^2-6x\right)^2-2\left(x-3\right)^2-81=\left[\left(x^2-6x\right)^2-81\right]-2\left(x-3\right)^2=\left[\left(x^2-6x\right)^2-9^2\right]-2\left(x-3\right)^2=\left(x^2-6x+9\right)\left(x^2-6x-9\right)-2\left(x-3\right)^2=\left(x-3\right)^2\left(x^2-6x-9\right)-2\left(x-3\right)^2=\left(x-3\right)^2\left(x^2-6x+11\right)\)

21 tháng 6 2019

=\(\left(x-3\right)^2\left(x^2-6x-11\right)\)

nha

Y
17 tháng 6 2019

a) \(A=\left(x^2+x-2\right)\left(x+7\right)-16\)

\(=x^3+8x^2+5x-14-16\)

\(=x^3+8x^2+5x-30\)

\(=x^3+3x^2+5x^2+15x-10x-30\)

\(=x^2\left(x+3\right)+5x\left(x+3\right)-10\left(x+3\right)\)

\(=\left(x^2+5x-10\right)\left(x+3\right)\)

b) \(A=x^4-2x^3-3x^2+4x+4+x^2-4x+4\)

\(=x^4-2x^3-2x^2+8\)

\(=x^3\left(x-2\right)-2\left(x^2-4\right)\)

\(=\left(x-2\right)\left(x^3-2x-4\right)\)

\(=\left(x-2\right)\left[x^2\left(x+2\right)+2x\left(x+2\right)-2\left(x+2\right)\right]\)

\(=\left(x-2\right)\left(x+2\right)\left(x^2+2x-2\right)\)

c) \(81x^4+4=81x^4+36x^2+4-36x^2\)

\(=\left(9x^2+2\right)^2-\left(6x\right)^2\)

\(=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)

d) \(\left(x^2-3\right)^2+16=x^4-6x^2+25\)

\(=\left(x^4+10x^2+25\right)-16x^2\)

\(=\left(x^2+5\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+5\right)\left(x^2+4x+5\right)\)

Y
17 tháng 6 2019

sửa câu b) xíu nha!

\(A=\left(x-2\right)\left(x^3-2x-4\right)\)

\(=\left(x-2\right)\left[x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\right]\)

\(=\left(x-2\right)^2\left(x^2+2x+2\right)\)

30 tháng 7 2017

b) \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)+\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3+x+5\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x+8\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\2x+8=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

30 tháng 7 2017

chán òi ko lm nữa đâu có ng đg bùn mk cx bùn theo lun xl nha