Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a) (2x + 1)(1 - 2x) + (2x - 1)2 = 22
=> 1 - 4x2 + (4x2 - 4x + 1) = 22
=> 1 - 4x2 + 4x2 + 4x + 1 = 22
=> 4x + 2 = 22
=> 4x = 20
=> x = 5
Vậy x = 5
áp dụng bđt cauchy-shwarz dạng engel
\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)
Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà a+b+c khác 0 nên a = b = c
\(\Rightarrow N=1\)
a, \(\left(3x+1\right)\left(3x-1\right)-\left(x-2\right)\left(x^2+2x+4\right)=x\left(6-x^2\right)\)
\(\Leftrightarrow9x^2-3x+3x-1-\left(x^3+2x^2+4x-2x^2-4x-8\right)=6x-x^3\)
\(\Leftrightarrow9x^2-1-\left(x^3-8\right)=6x-x^3\)
\(\Leftrightarrow9x^2-1-x^3+8=6x-x^3\)
\(\Leftrightarrow9x^2-1-x^3+8-6x+x^3=0\)
\(\Leftrightarrow9x^2+7-6x=0\)( vô nghiệm )
b, Tương tự
a, \(\left(3x+1\right)\left(3x-1\right)-\left(x-2\right)\left(x^2+2x+4\right)=x\left(6-x^2\right)\)
\(< =>9x^2-1-\left(x-2\right)\left(x^2+2x+2^2\right)=x\left(6-x^2\right)\)
\(< =>9x^2-1-\left(x^3-2^3\right)=6x-x^3\)
\(< =>9x^2-1-x^3+2^3-6x+x^3=0\)
\(< =>9x^2-6x+7=0\)
\(< =>\left(3x\right)^2-2.3x+1=-6\)
\(< =>\left(3x-1\right)^2=-6\)
Do \(\left(3x-1\right)^2\)luôn luôn lớn hơn hoặc bằng 0
Vậy phương trình trên vô nghiệm
\(\left(2+1\right)\left(2^2+1\right)...\left(2^8+1\right)-2^{16}=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^8+1\right)-2^{16}\)\(2^{16}\)
\(=-1\)
Bài 2:
a: \(\left(2x+1\right)\left(1-2x\right)+\left(2x-1\right)^2=22\)
\(\Leftrightarrow\left(2x-1\right)\left(-2x-1\right)+\left(2x-1\right)^2=22\)
\(\Leftrightarrow\left(2x-1\right)\left(-2x-1+2x-1\right)=22\)
\(\Leftrightarrow2x-1=-11\)
=>2x=-10
hay x=-5
b: \(\Leftrightarrow x^2-10x+25+x^2-9-2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow2x^2-10x+34-2x^2-4x-2=0\)
=>-14x+32=0
=>-14x=-32
hay x=16/7
c: \(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-4x+1-7\left(x^2-9\right)=36\)
\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2+63=36\)
=>8x+76=36
=>8x=-40
hay x=-5
d: \(\Leftrightarrow\left(x^2-9\right)\left(x^2+9\right)-\left(x^4-4\right)-3x=15x-41\)
\(\Leftrightarrow x^4-81-x^4+4-3x-15x+41=0\)
=>-18x-36=0
hay x=-2
e: \(\Leftrightarrow x^2-14x+49-x^2-6x-9+x^2-10x+25=x^2-9\)
\(\Leftrightarrow x^2-30x+55=x^2-9\)
=>-30x+55=-9
=>-30x=-64
hay x=32/15