Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Do \(x=-4\)là một nghiệm của pt trên nên
Thay \(x=-4\)vào pt trên pt có dạng :
\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)
Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)
\(\Delta=9-4.\left(-28\right)=9+112=121>0\)
vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)
b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)
a: Δ=(-2m)^2-4*3*1=4m^2-12
Để phương trình có nghiệm kép thì 4m^2-12=0
=>m^2=3
=>\(m=\pm\sqrt{3}\)
b:
TH1: m=0
=>-6x-3=0
=>x=-1/2(nhận)
TH2: m<>0
Δ=(-6)^2-4*4m*(-m-3)
=36-16m(-m-3)
=36+16m^2+48m
=16m^2+48m+36
Để phương trình có nghiệm kép thì 16m^2+48m+36=0
=>m=-3/2
c: TH1: m=-2
=>-2(-2-1)x+4=0
=>6x+4=0
=>x=-2/3(nhận)
TH2: m<>-2
Δ=(2m-2)^2-4(m+2)*4
=4m^2-16m+4-16m-32
=4m^2-32m-28
Để pt có nghiệm kép thì 4m^2-32m-28=0
=>\(m=\dfrac{16\pm6\sqrt{11}}{5}\)
d: TH1: m=6
=>18x-2=0
=>x=1/9(nhận)
TH2: m<>6
Δ=(3m)^2-4*(-2)(m-6)
=9m^2+8m-48
Để pt có nghiệm kép thì 9m^2+8m-48=0
=>\(m=\dfrac{-4\pm8\sqrt{7}}{9}\)
=>2x+6y=2m+2 và 2x-y=7
=>7y=2m-5 và 2x-y=7
=>y=2/7m-5/7 và 2x=y+7
=>y=2/7m-5/7 và 2x=2/7m+30/7
=>x=1/7m+15/7 và y=2/7m-5/7
x0+2y0 bằng gì bạn ơi?
\(\Leftrightarrow\Delta=4\left(m-2\right)^2-4m\left(m-3\right)=0\\ \Leftrightarrow4m^2-16m+16-4m^2+12m=0\\ \Leftrightarrow16-4m=0\\ \Leftrightarrow m=4\)
Chọn B
Đặt x 2 = t (t ≥ 0) ta được phương trình t 2 – 6t – 7 = 0 (*)
Nhận thấy a – b + c = 1 + 6 – 7 = 0 nên phương trình (*) có hai nghiệm t 1 = − 1 ( L ) ; t 2 = 7 ( N )
Thay lại cách đặt ta có x 2 = 7 ⇔ x = ± 7
Vậy phương trình đã cho có hai nghiệm
Đáp án: C