K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2021

Cái em cần là giải ạ chứ ko phải đáp án

 

NV
4 tháng 10 2020

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(2cos^2x-1\right)-4cosx-1=0\\sinx\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4cos^2x-4cosx-3=0\\sinx\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}cosx=\frac{3}{2}\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\\sinx\ge0\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{2\pi}{3}+k2\pi\)

NV
12 tháng 7 2020

Nhìn cái đề lúc đầu không biết phải xử lý thế nào luôn

\(2\left(2cos^2x-1\right)-4cosx=1\)

\(\Leftrightarrow4cos^2x-4cosx-3=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{3}{2}>1\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow cosx=cos\left(\frac{2\pi}{3}\right)\)

\(\Rightarrow x=\frac{2\pi}{3}+k2\pi\) (do \(sinx\ge0\) nên ko nhận nghiệm \(-\frac{2\pi}{3}+k2\pi\))

12 tháng 7 2020

sin2x thành cos2x nha

9 tháng 7 2019

4sin2x = 3 <=> \(\left[{}\begin{matrix}sinx=\frac{\sqrt{3}}{2}\\sinx=\frac{-\sqrt{3}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x=\frac{-\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

kết hợp nghiệm trên đường tròn lượng giác , ta suy ra B