Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
nên mặt phẳng (P) nhận
và (P) đi qua điểm M(-1;-2;5) nên có phương trình là:
1 ( x + 1 ) + 1 ( y + 2 ) + 1 ( z - 5 ) = 0 h a y x + y + z - 2 = 0 .
Chọn D
nên mặt phẳng (P) nhận
và (P) đi qua điểm M(-1;-2;5) nên có phương trình là:
1 ( x + 1 ) + 1 ( y + 2 ) + 1 ( z - 5 ) = 0 h a y x + y + z - 2 = 0 .
\(\overrightarrow{AB}=\left(1;2;3\right)\) ; \(\overrightarrow{CD}=\left(1;1;1\right)\)
\(\left[\overrightarrow{AB};\overrightarrow{CD}\right]=\left(-1;2;-1\right)=-\left(1;-2;1\right)\)
Phương trình (P):
\(1\left(x-1\right)-2y+1\left(z-1\right)=0\Leftrightarrow x-2y+z-2=0\)
Để tìm phương trình mặt phẳng (P) ta cần tìm được vector pháp tuyến của mặt phẳng. Vì mặt phẳng (P) song song với đường thẳng AB nên vector pháp tuyến của (P) cũng vuông góc với vector chỉ phương của AB, tức là AB(1-0;2-0;4-1)=(1;2;3).
Vì (P) đi qua C(1;0;1) nên ta dễ dàng tìm được phương trình của (P) bằng cách sử dụng công thức phương trình mặt phẳng:
3x - 2y - z + d = 0, trong đó d là vế tự do.
Để tìm d, ta chỉ cần thay vào phương trình trên cặp tọa độ (x;y;z) của điểm C(1;0;1):
3(1) -2(0) - (1) + d = 0
⇒ d = -2
Vậy phương trình của mặt phẳng (P) là:
3x - 2y - z - 2 = 0,
và đáp án là B.
a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)
b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)
\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)
c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)
Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)
Đáp án B.
Gọi
thuộc d 1 và
thuộc d 2 là 2 giao điểm.
Ta có:
Vì M N → cùng phương với
nên ta có:
điểm này thuộc đường thẳng ở đáp án B.
Chọn D.
Vì M thuộc ∆ nên tọa độ M(-2+t;2 t;-t)
Mà điểm M thuộc mp (P) thay tọa độ điểm M vào phương trình mp(P) ta được:
-2 + t + 2(2 + t) - 3.(-t) + 4 = 0
⇔ 6t + 6 = 0 ⇔ t = -1 ⇒ M(-3;1;1)
Mặt phẳng (P) có vectơ pháp tuyến
Đường thẳng ∆ có vectơ chỉ phương
Có
Đường thẳng d đi qua điểm M(-3;1;1) và có vectơ chỉ phương là a d → .
Vậy phương trình tham số của d là x = - 3 + t y = 1 - 2 t z = 1 - t
\(\overrightarrow{MI}=\left(2;-3;-3\right)\)
(P) tiếp xúc (I) tại M nên nhận (2;-3;-3) là 1 vtpt
Phương trình:
\(2\left(x-1\right)-3\left(y-4\right)-3\left(z-2\right)=0\)
\(\Leftrightarrow2x-3y-3z+16=0\)
Đáp án B
Phương trình mặt phẳng (Q) có dạng: x - 2y - 3z + m = 0 (m ≠ 10).
Vì (Q) đi qua điểm A(2; -1; 0) nên ta có 2 + 2 + m = 0 <=> m = -4.
Vậy phương trình mặt phẳng (Q) là x - 2y - 3z -4 = 0 hay -x + 2y + 3z + 4 = 0.
\(\overrightarrow{AB}=\left(1;1-3\right)\), \(\overrightarrow{AC}=\left(-1;2;-5\right)\)
\(\left[\overrightarrow{AB},\overrightarrow{AC}\right]=\left(1,8,3\right)\)
\(\Rightarrow\left(ABC\right)\) nhận (1,8,3) là 1 ptvt
Phương trình:
\(1\left(x-5\right)+8\left(y-1\right)+3\left(z-4\right)=0\)
\(\Leftrightarrow x+8y+3z-25=0\)