K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 8

\(\overrightarrow{AB}=\left(1;1-3\right)\)\(\overrightarrow{AC}=\left(-1;2;-5\right)\)

\(\left[\overrightarrow{AB},\overrightarrow{AC}\right]=\left(1,8,3\right)\)

\(\Rightarrow\left(ABC\right)\) nhận (1,8,3) là 1 ptvt

Phương trình:

\(1\left(x-5\right)+8\left(y-1\right)+3\left(z-4\right)=0\)

\(\Leftrightarrow x+8y+3z-25=0\)

17 tháng 9 2019

Chọn D

nên mặt phẳng (P) nhận 

và (P) đi qua điểm M(-1;-2;5) nên có phương trình là:

1 ( x   +   1 )   +   1 ( y   +   2 )   +   1 ( z   -   5 )   =   0   h a y   x   +   y   +   z   - 2   =   0 .

18 tháng 6 2018

Chọn D

nên mặt phẳng (P) nhận 

và (P) đi qua điểm M(-1;-2;5) nên có phương trình là:

1 ( x   +   1 )   +   1 ( y   +   2 )   +   1 ( z   -   5 )   =   0   h a y   x   +   y   +   z   - 2   =   0 .

NV
6 tháng 3 2023

\(\overrightarrow{AB}=\left(1;2;3\right)\) ; \(\overrightarrow{CD}=\left(1;1;1\right)\)

\(\left[\overrightarrow{AB};\overrightarrow{CD}\right]=\left(-1;2;-1\right)=-\left(1;-2;1\right)\)

Phương trình (P):

\(1\left(x-1\right)-2y+1\left(z-1\right)=0\Leftrightarrow x-2y+z-2=0\)

6 tháng 3 2023

Để tìm phương trình mặt phẳng (P) ta cần tìm được vector pháp tuyến của mặt phẳng. Vì mặt phẳng (P) song song với đường thẳng AB nên vector pháp tuyến của (P) cũng vuông góc với vector chỉ phương của AB, tức là AB(1-0;2-0;4-1)=(1;2;3).

Vì (P) đi qua C(1;0;1) nên ta dễ dàng tìm được phương trình của (P) bằng cách sử dụng công thức phương trình mặt phẳng:

3x - 2y - z + d = 0, trong đó d là vế tự do.

Để tìm d, ta chỉ cần thay vào phương trình trên cặp tọa độ (x;y;z) của điểm C(1;0;1):

3(1) -2(0) - (1) + d = 0

⇒ d = -2

Vậy phương trình của mặt phẳng (P) là:

3x - 2y - z - 2 = 0,

và đáp án là B.

25 tháng 10 2018

NV
27 tháng 2 2021

a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)

b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)

\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)

c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)

\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)

Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)

27 tháng 4 2017

Hỏi đáp Toán

7 tháng 12 2017

Đáp án B.

Gọi 

thuộc d 1 và

thuộc d 2   là 2 giao điểm.

Ta có:  

Vì M N →  cùng phương với

 nên ta có:

 điểm này thuộc đường thẳng ở đáp án B.

1 tháng 11 2019

Chọn D.

Vì M thuộc ∆ nên tọa độ M(-2+t;2 t;-t)

Mà điểm M thuộc mp (P) thay tọa độ điểm M vào phương trình mp(P) ta được:

-2 + t + 2(2 + t) - 3.(-t) + 4 = 0

⇔ 6t + 6 = 0 ⇔ t = -1 ⇒ M(-3;1;1)

Mặt phẳng (P) có vectơ pháp tuyến  

Đường thẳng ∆ có vectơ chỉ phương 

Đường thẳng d đi qua điểm M(-3;1;1) và có vectơ chỉ phương là  a d → .

Vậy phương trình tham số của d là  x = - 3 + t y = 1 - 2 t z = 1 - t

NV
23 tháng 11 2021

\(\overrightarrow{MI}=\left(2;-3;-3\right)\)

(P) tiếp xúc (I) tại M nên nhận (2;-3;-3) là 1 vtpt

Phương trình:

\(2\left(x-1\right)-3\left(y-4\right)-3\left(z-2\right)=0\)

\(\Leftrightarrow2x-3y-3z+16=0\)

27 tháng 8 2019

Đáp án B

Phương trình mặt phẳng (Q)  dạng: x - 2y - 3z + m = 0 (m ≠ 10).

 (Q) đi qua điểm A(2; -1; 0) nên ta  2 + 2 + m = 0 <=> m = -4.

Vậy phương trình mặt phẳng (Q)  x - 2y - 3z -4 = 0 hay -x + 2y + 3z + 4 = 0.