K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 4 2019

Xét hàm \(f\left(x\right)=x^3-3x+2\Rightarrow f'\left(x\right)=3x^2-3\)

\(f'\left(x\right)=0\Rightarrow x=\pm1\) ; \(f\left(-1\right)=4>log_210\) ; \(f\left(1\right)=0< log_210\)

\(\Rightarrow\) Dựa vào BBT, ta thấy đường thẳng \(y=log_210\) cắt \(y=\left|f\left(x\right)\right|\) tại 4 điểm

\(\Rightarrow\) Pt có 4 nghiệm

NV
25 tháng 6 2021

ĐKXĐ: \(-x^2+4x+m>0\)

\(log_2\left(-x^2+4x+m\right)-log_2\left(x^2+2\right)< log_23\)

\(\Leftrightarrow log_2\left(\dfrac{-x^2+4x+m}{x^2+2}\right)< log_23\)

\(\Leftrightarrow\dfrac{-x^2+4x+m}{x^2+2}< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x^2+4x+m>0\\-x^2+4x+m< 3x^2+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>x^2-4x\\m< 4x^2-4x+6\end{matrix}\right.\) ; \(\forall x\in\left[1;5\right]\)

Xét hai hàm \(\left\{{}\begin{matrix}f\left(x\right)=x^2-4x\\g\left(x\right)=4x^2-4x+6\end{matrix}\right.\) trên \(\left[1;5\right]\) ta được: \(\left\{{}\begin{matrix}f\left(x\right)_{max}=f\left(5\right)=5\\g\left(x\right)_{min}=g\left(1\right)=6\end{matrix}\right.\)

\(\Rightarrow5\le m\le6\)

Có 2 giá trị nguyên của m

NV
20 tháng 6 2021

\(1\le1+\sqrt{1-x^2}\le2\Rightarrow3\le3^{1+\sqrt{1-x^2}}\le9\)

Đặt \(3^{1+\sqrt{1-x^2}}=t\Rightarrow t\in\left[3;9\right]\)

Phương trình trở thành: \(t^2-\left(m+2\right)t+2m+1=0\) 

\(\Leftrightarrow t^2-2t+1=m\left(t-2\right)\Leftrightarrow m=\dfrac{t^2-2t+1}{t-2}\)

Xét hàm \(f\left(t\right)=\dfrac{t^2-2t+1}{t-2}\) trên \(\left[3;9\right]\)

\(f'\left(t\right)=\dfrac{t^2-4t+3}{\left(t-2\right)^2}\ge0\) ; \(\forall t\in\left[3;9\right]\Rightarrow f\left(t\right)\) đồng biến trên khoảng đã cho

\(\Rightarrow f\left(3\right)\le f\left(t\right)\le f\left(9\right)\Rightarrow4\le m\le\dfrac{64}{7}\)

Có 6 giá trị nguyên của m 

20 tháng 6 2021

Cho e hỏi tại sao điều kiện lại nằm trong khoảng [1,2] vậy ạ ?

27 tháng 12 2021

https://video.vietjack.com/upload2/quiz_source1/2020/01/100-bai-trac-nghiem-ham-so-mu-va-logarit-co-loi-giai-chi-tiet-3-1-1579254891.PNG

bạn tham khảo nha

10 tháng 11 2018

Chọn B.

Đặt t = 5x-2 > 0, phương trình trở thành 3t2 + (3x - 10) t + 3 – x = 0 (*)

Ta coi đây là phương trình bậc hai ẩn t  và có

∆ = (3x - 10) 2 – 4.3( 3 - x) = (3x - 8)2

Suy ra phương trình(*)  có hai nghiệm: t = 1/3 hoặc t = 3 - x.

Với 

Với t = 3 - x thì 5x-2 = 3 - x. Dễ thấy x = 2  là nghiệm duy nhất (Vế trái là hàm đồng biến, vế phải là hàm nghịch biến).

Vậy phương trình đã cho có hai nghiệm.