Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Áp dụng các hằng đẳng thức đáng nhớ ta có:
$C=a^4+b^4=(a^2+b^2)^2-2a^2b^2$
$=[(a+b)^2-2ab]^2-2(ab)^2$
$=(8^2-2.15)^2-2.15^2=706$
Bài 2:
a)
$D=-x^2+6x-11=-11-(x^2-6x)=-2-(x^2-6x+9)$
$=-2-(x-3)^2$
Vì $(x-3)^2\geq 0$ với mọi $x$ nên $D=-2-(x-3)^2\leq -2$
Vậy GTLN của $D$ là $-2$ khi $(x-3)^2=0\Leftrightarrow x=3$
b)
$F=4x-x^2+1=1-(x^2-4x)=5-(x^2-4x+4)=5-(x-2)^2$
$\leq 5-0=5$
Vậy $F_{\max}=5$. Giá trị này được khi $(x-2)^2=0\leftrightarrow x=2$
\(x^3+x^2+x=m\left(x^2+1\right)^2\Leftrightarrow\dfrac{x^3+x^2+x}{\left(x^2+1\right)^2}=m\)
Xét hàm \(f\left(x\right)=\dfrac{x^3+x^2+x}{\left(x^2+1\right)^2}\)
\(f'\left(x\right)=\dfrac{\left(3x^2+2x+1\right)\left(x^2+1\right)^2-4x\left(x^2+1\right)\left(x^3+x^2+x\right)}{\left(x^2+1\right)^4}\)
\(f'\left(x\right)=\dfrac{\left(x^2+1\right)\left(3x^2+2x+1\right)-4x\left(x^3+x^2+x\right)}{\left(x^2+1\right)^3}\)
\(f'\left(x\right)=\dfrac{-x^4-2x^3+2x+1}{\left(x^2+1\right)^3}=\dfrac{\left(1-x\right)\left(x+1\right)^3}{\left(x^2+1\right)^3}\)
\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có đúng 2 cực trị
\(\Rightarrow\) Đường thẳng \(y=m\) cắt đồ thị hàm số \(y=f\left(x\right)\) tại tối đa 3 điểm hay phương trình \(f\left(x\right)=m\) có tối đa 3 nghiệm phân biệt
\(\Rightarrow\) Không tồn tại m để phương trình đã cho có 4 nghiệm phân biệt
Lời giải:
\(a+b=3\Rightarrow a+(b-2)=1\Rightarrow b-2=1-a\)
Ta có:
\(f(x)=\frac{9^x}{9^x+3}\Rightarrow f(a)=\frac{9^a}{9^a+3}\) (1)
\(f(b-2)=f(1-a)=\frac{9^{1-a}}{9^{1-a}+3}=\frac{9}{9^a\left(\frac{9}{9^a}+3\right)}\)
\(=\frac{9}{9+3.9^a}=\frac{3}{3+9^a}\) (2)
Từ (1),(2) suy ra \(f(a)+f(b-2)=\frac{9^a}{9^a+3}+\frac{3}{3+9^a}=\frac{9^a+3}{9^a+3}=1\)
Đáp án A
bài2:
x4-2x2-3=-m
vế trái có x4-2x2-3=0
bảng
x | -∞ -1 0 1 +∞ |
f'x | - 0 + 0 - 0 + |
fx | -4 -3 -4 |
phương trình có 4 nghiệm khi
-4<-m<-3
=> 3<m<4
Câu 1:
Hệ điều kiện: \(\left\{{}\begin{matrix}2x^2+3>x^2+mx+1\\x^2+mx+1>0\end{matrix}\right.\) \(\forall x\in R\)
Xét BPT đầu tiên:
\(\Leftrightarrow x^2-mx+2>0\) \(\forall x\)
\(\Leftrightarrow\Delta=m^2-8< 0\Rightarrow-2\sqrt{2}< m< 2\sqrt{2}\)
Xét BPT thứ 2:
\(x^2+mx+1>0\)
\(\Leftrightarrow\Delta=m^2-4< 0\Rightarrow-2< m< 2\)
Kết hợp lại ta được \(-2< m< 2\)
Câu 2:
\(\left|x+2+\left(y-3\right)i\right|=2\sqrt{2}\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2=8\)
\(\Rightarrow\) Quỹ tích z là các điểm \(M\left(x;y\right)\) nằm trên đường tròn (C) tâm \(I\left(-2;3\right)\) bán kính \(R=2\sqrt{2}\)
Gọi \(A\left(-1;-6\right);B\left(7;2\right)\) và \(C\left(3;-2\right)\) là trung điểm AB
\(\Rightarrow P=\left|z+1+6i\right|+\left|z-7-2i\right|=MA+MB\)
Gọi d là đường thẳng qua C và I, cắt đường tròn (C) tại D trong đó I nằm giữa C và D
\(\Rightarrow P_{max}\) khi \(M\equiv D\)
\(\overrightarrow{CI}=\left(-5;5\right)\Rightarrow\) đường thẳng CI nhận \(\overrightarrow{n_{CI}}=\left(1;1\right)\) là 1 vtpt
\(\Rightarrow\)Phương trình CI: \(x+y-1=0\)
Tọa độ D là nghiệm: \(\left\{{}\begin{matrix}\left(x+2\right)^2+\left(y-3\right)^2=8\\x+y-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-4\end{matrix}\right.\)
\(\Rightarrow y=1-x=5\Rightarrow\left\{{}\begin{matrix}x=-4\\y=5\end{matrix}\right.\)
ĐKXĐ: \(-2\le x\le2\)
Đặt \(\sqrt{2-x}+\sqrt{2+x}=t\Rightarrow2\le t\le2\sqrt{2}\)
\(t^2=4+2\sqrt{4-x^2}\Rightarrow-\sqrt{4-x^2}=\frac{4-t^2}{2}\)
Phương trình trở thành:
\(t+\frac{4-t^2}{2}=m\Leftrightarrow f\left(t\right)=-\frac{1}{2}t^2+t+2=m\)
Xét \(f\left(t\right)\) trên \(\left[2;2\sqrt{2}\right]\)
\(-\frac{b}{2a}=1\notin\left[2;2\sqrt{2}\right]\) ; \(f\left(2\right)=2\) ; \(f\left(2\sqrt{2}\right)=2\sqrt{2}-2\)
\(\Rightarrow2\sqrt{2}-2\le m\le2\Rightarrow\left[{}\begin{matrix}a=2\sqrt{2}-2\\b=2\end{matrix}\right.\)
\(\Rightarrow T=6\)
Đáp án B.
1=1=3464535656567765432345676543234567