Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi số cần tìm có dạng ,
Chọn f: có 3 cách
Chọn b,c,d,e :có cách
Vậy có số
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
Gọi số cần lập có dạng \(\overline{abcde}\)
e có 4 cách chọn (từ 1;3;5;7)
a có 6 cách chọn (khác 0 và e)
b có 6 cách chọn (khác a và e)
c có 5 cách chọn (khác a,b,e)
d có 4 cách chọn (khác a,b,c,e)
Theo quy tắc nhân, có: \(4.6.6.5.4=...\) số
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
Vì có 3 số lẻ là 1,3,5, nên ta tạo được 6 cặp số kép: 13;31;15;51;35;53
Gọi A là tập các số gồm 4 chữ số được lập từ X={0;13;2;4;6}.
Gọi A1,A2,A3 tương ứng là số các số tự nhiên lẻ gồm 4 chữ số khác nhau được lập từ các chữ số của tập X và 13 đứng ở vị trí thứ nhất, thứ hai và thứ ba.
Ta có:
Nên
Vậy số các số cần lập là: 6.60=360 số.
Chọn A.
a. Số số lập được: \(5.5=25\) số
b. \(5.5.4=100\) số
c. Gọi số đó là abcd
TH1: d=0 \(\Rightarrow abc\) có \(A_5^3=60\) cách
TH2: \(d\ne0\Rightarrow d\) có 2 cách, abc có \(4.4.3=48\)
Tổng cộng: \(60+2.48=156\) số
d. Gọi số đó là abcde
e có 3 cách chọn
abcd có \(4.4.3.2=96\) cách
Tổng cộng: \(3.96=288\) số
Lời giải:
Gọi số cần tìm có dạng $\overline{abc}$. Xét các TH sau:
TH1: $c=0$
$a$ có 7 cách chọn, từ $1,2,4,5,7,8,9$
$b$ có 6 cách chọn
$\Rightarrow$ có $7.6=42$ cách chọn số
TH2: $c\neq 0$
$c$ có 3 cách chọn $(2,4,8)$
$a$ có $6$ cách chọn (bỏ số 0)
$b$ có $6$ cách chọn
$\Rightarrow$ có $3.6.6=108$ cách chọn số
Từ 2 TH trên suy ra có $108+42=150$ cách chọn số.
Đáp án : D
Để tính nhanh với bài này ta dùng quy tắc phần bù.
Trước tiên ta tính số các số chẵn có 5 chữ số đôi một khác nhau và được lập ra từ các chữ số của tập A.
+ Gọi các số đó là
e có 4 cách chọn( vì x là số chẵn nên e có thể là 2;34;6;8); a có 8 cách; b có 7 cách; c có 6 cách và d có 5 cách.
Nên có tất cả 4.8.7.6.5=6720 số
+ Gọi là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.
Suy ra b có 3 cách chọn (b có thể là 2;4;8), a có 5 cách chọn nên có số.
+ Suy ra có tất cả 6720 - 15 = 6705 số cần tìm.
Câu 1: Chữ số cuối có 3 cách chọn
5 chữ số còn lại có \(5!\) hoán vị
Tổng cộng có \(5!.3=360\) số
Hoặc làm thế này: gọi số đó là abcdef
Do số chẵn nên f có 3 cách chọn, a có 5 cách chọn, b có 4 cách chọn, c có 3 cách chọn, d có 2 cách chọn, e có 1 cách chọn
Vậy có\(3.5.4.3.2.1=360\) số
Câu 2:
Gọi số đó là abcde
e có 3 cách chọn, a có 5 cách chọn (khác e và khác 0), b có 5 cách chọn, c có 4 cách chọn, d có 3 cách chọn
Tổng cộng có \(3.5.5.4.3=900\) số
Cảm ơn bạn