Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không vì A=n^2+n+1 nên A luôn là 1 số lẻ
suy ra A không chia hết cho 2 nên A không chia hết cho bội của 2 là 2010
Không Vì A luôn là số lẻ => không chia hết cho 2=> không chia hết cho 2010
Ta có : \(3a+24b=3a+3.8b=3\left(a+8b\right)⋮3\)
mà 633326 chia 3 dư 2
\(\Rightarrow\)Vô lí
Vậy không tồn tại các số tự nhiên a,b thỏa mãn đề bài.
mk chỉ làm câu b thôi
n^2 + n + 2
= n(n+1) + 2
giả sử n^2 + n +2 chia hết cho 5
=> n(n+1) chia hết cho5 ( vì 2 ko chia hết cho 5 )
mà n, n+1 là 2 số tự nhiên liên tiếp có thể có 1 số chia hết cho 5
Vd n= 4 và n+1 = 5
vậy vẫn tồn tại số tự nhiên n để n^2 + n + 2 chia hết cho 5
a) số 1 trên mũ hay ở dứoi
b) n^2+n=n(n+1) không có tận cùng là 3 hoặc 8 => n^2+n+2 không chia hết cho 5
c)
số chữ số 2^100=a
số chữ số 5^100=b
\(10^{a-1}<2^{100}<10^a\)
\(10^{b-1}<5^{100}<10^b\)
Nhân vế với vế
\(10^{a+b-2}<\left(2.5\right)^{100}<10^{a+b}\)
a+b-2<100<a+b
=> 100<a+b<102
a, b nguyên=> a+b=101
ds: 101
Ta có :n2 + 2 + 2 = n . ( n+1 ) + 2
Mà n.(n + 1 ) là 2 stn liên tiếp nhân với nhau
Suy ra : n.( n + 1 ) chỉ có cs tận cùng là : 0;2;6
Do đó : n .( n +1 ) + 2 có cs tận cùng : 2;4;8 ( Không chia hết cho 5 vì không có cs tận cùng là 0;5 )
Vậy không tồn tại stn n nào để n2 + n + 2 chia hết cho 5
27a + 9b = 91.
=> 3.9.a + 9.b = 91
=> 9.(3a + b) = 91
=> 91 là số chia hết cho 9 mà (9 + 1) = 10 không chia hết cho 9
=> Không tồn tại 2 số tự nhiên a, b để: 27a + 9b = 91.
27a + 9b = 91
<=> 3.9.a + 9b = 91
<=> 9(3a + b ) = 91
Mà 91 không chia hết cho 9
=> không tồn tại 2 số tự nhiên a,b để 27a + 9b = 91