Bài 20. Cho tam gi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

Cho tam giác ABC cân tại A. Điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:

a. BE = CD

b. Tam giác KBD bằng tam giác KCE

c. AK là phân giác của góc A

d. Tam giác KBC cân

20 tháng 2 2022

ngáo

NM
7 tháng 3 2021

A B D E K C

a. ta có \(\hept{\begin{cases}\widehat{A}\text{ chung}\\AB=AC\\AD=AE\end{cases}\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\Rightarrow}BE=CD\)

b. ta có \(\hept{\begin{cases}BD=CE\\\widehat{BKD}=\widehat{CKE}\text{ (đối đỉnh)}\\\widehat{KBE}=\widehat{KCD}\text{ (Do chứng minh ở câu a)}\end{cases}\Rightarrow\Delta KBD=\Delta KCE}\)

c. ta có \(\hept{\begin{cases}\widehat{ABK}=\widehat{ACK}\text{ (Do c/m ở câu a)}\\AB=AC\\KB=KC\text{ (Do c/m ở câu b)}\end{cases}\Rightarrow\Delta ABK=\Delta ACK\left(c.g.c\right)\Rightarrow}\)AK là phân giác

d. ta có KB=KC ( kết quả c/m của câu b) nên KBC cân tại K

4 tháng 2 2022
a) Xét tam giác BCD,ta có: Góc B=C BD = EC BC là cạnh chung Do đó tam giác BCD= tam giác BCD (c-g-c) BE = CD ( 2 cạnh tương ứng) Vậy ... b)Xét tâm giác KBD và tam giác KCE,ta có : BKD = CKE ( đối đỉnh ) BD = CE KB = KC Do đó tg KBD =tg KCE(c-g-c) Vậy ...
Bài 1: Cho tam giác ABC có AB=AC. Lấy I là trung điểm BCa) Chứng minh tam giác AIB=tam giác AICb) Chứng minh AI vuông góc với BCc) Trên tia đối ủa tia IA lấy điểm K sao cho IA=IK. Chứng minh BK=ACBài 2: Cho tam giác ABC có góc BAC là góc nhọn, AB<AC. Vẽ tia Ax là phân giác của góc BAC, tia Ax cắt BD tại D. Trên tia AC lấy điểm E sao cho AE=ABa) Chứng minh tam giác ADB=tam giác ADEb)Chứng minh DB=DEc) Biết góc BDA=65 độ. Tính...
Đọc tiếp

Bài 1: Cho tam giác ABC có AB=AC. Lấy I là trung điểm BC

a) Chứng minh tam giác AIB=tam giác AIC

b) Chứng minh AI vuông góc với BC

c) Trên tia đối ủa tia IA lấy điểm K sao cho IA=IK. Chứng minh BK=AC

Bài 2: Cho tam giác ABC có góc BAC là góc nhọn, AB<AC. Vẽ tia Ax là phân giác của góc BAC, tia Ax cắt BD tại D. Trên tia AC lấy điểm E sao cho AE=AB

a) Chứng minh tam giác ADB=tam giác ADE

b)Chứng minh DB=DE

c) Biết góc BDA=65 độ. Tính số đo góc EDC

Bài 3: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA

a) Chứng minh tam giác BID=tam giác CIA

b) Chứng minh BD song song AC

c) Chứng minh BD vuông góc với AB

Bài 4: Cho góc xOy khác góc bẹt. Lấy các điểm A, B trên tia Ox sao cho OA<OB. Lấy các điểm C, D thuộc tia Oy sao cho OC=OA; OD=OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:

a) Tam giác OAD=tam giác OCB

b) BE=ED

c) OE là tia phân giác của góc xOy

Vẽ hình, ghi giả thiết+kết luận rồi làm bài cho mình nhanh nha

Mình đang cần rất gấp nên các bạn giúp mình nhanh nha, mai thi rồi

Cảm ơn mọi người trước ạ!

3
11 tháng 12 2018

A B C I K

11 tháng 12 2018

Bài 1

a) Xét tam giác AIB và tam giác AIC

AB = AC ( gt )

AI cạnh chung

BI = IC ( gt )

=> tam giác AIB = tam giác AIC ( c - c - c )

b) Xét tam giác ABC có AB = AC => tam giác ABC cân tại A ( định nghĩa )

tam giác ABC có AI là trung tuyến đồng thời là đường cao ( t/ chất của tam giác cân )

=> AI vuông góc với BC

c) Xét tam giác ABI và tam giác KBI có:

AI = IK ( gt )

góc AIB = góc KIB ( = 90 độ )

BI :cạnh chung

=> tam giác ABI = tam giác KBI ( c - g - c )

=> AB = BK ( 2 cạnh tương ứng)

Mà AB = AC ( gt)

=> AC = BK

28 tháng 2 2021

T           b         i          m        m          v  

h           ạ        m         ẹ         ồ           à

ô           n                               m          o

i

Bài 2) 

Xét ∆ vuông BAD và ∆ vuông EBD ta có : 

BD chung 

ABD = CBD ( BD là phân giác ABC )

=> ∆BAD = ∆EBD ( ch-gn)

=> BA = BE 

=> ∆ABE cân tại B 

b) Xét ∆ vuông FAD và ∆ vuông EDC ta có : 

ADF = EDC ( đối đỉnh) 

AD = DE ( ∆BAD = ∆EBD )

=> ∆FAD = ∆EDC ( cgv-gn)

=> FD = DE (dpcm)

25 tháng 4 2018

a) 

Ta có AB = AC ( gt )

   Mà AD = AE ( gt )

=> BD = EC

Xét tam giác BDC và tam giác CEB 

Ta có : BD = EC ( cmt )

  góc DBC = góc ECB ( tam giác ABC cân tạI A )

            BC là cạnh chung

Nên tam giác BDC = tam giác CEB ( c-g-c )

=> BE = CD ( 2 cạnh tương ứng )

 b) 

Ta có : góc DCB = góc EBC ( tam giác BDC = tam giác CEB 0

     Mà góc ECB = góc DBC ( tam giác ABC cân tại A )

 => góc ECK = góc DBK

Xét tam giác KBD và tam giác KCE

Ta có : góc DBK = góc ECK ( cmt )

                     DB = EC ( chứng minh ở đầu bài )

            góc BDK = góc CEB  ( tam giác BDC = tam giác CEB ) 

Nên tam giác KBD = tam giác KCE ( g-c-g )

c) 

Xét tam giác ADK và tam giác EDK 

Ta có : AD = AE ( GT )

            DK = EK ( tam giác KBD = tam giác KCE )

            AK là cạnh chung

Nên tam giác ADK = tam giác AEK ( c-c-c )

=> góc DAK = góc EAK

=> AK là p/g góc BAC

d)

Ta có KB = KC ( tam giác KBD = tam giác KCE )

=> Tam giác KBC cân tại K