Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác OAB là tam giác đều có cạnh R= 5,1 cm.
Công thức tính diện tích tam giác đều cạnh a là:
Do đó, diện tích tam giác đều OAB cạnh OA= R = 5,1 cm là:
Diện tích hình quạt tròn AOB là:
Từ (1) và (2) suy ra diện tích hình viên phân là:
Hướng dẫn giải:
∆OAB là tam giác đều có cạnh bằng R = 5,1cm. Áp dụng công thức tính diện tích tam giác đều cạnh a là a2√44 ta có
S∆OBC = SΔOBC=R2√34 (1)
Diện tích hình quạt tròn AOB là:
π.R2.6003600=πR26 (2)
Từ (1) và (2) suy ra diện tích hình viên phân là:
πR26−R2√34=R2(π6−√34)
Thay R = 5,1 ta có Sviên phân ≈ 2,4 (cm2)
góc AOB=180-60=120 độ
S OAB=1/2*OA*OB*sinAOB=\(R^2\cdot\dfrac{\sqrt{3}}{4}\)
S q OAB=\(pi\cdot R^2\cdot\dfrac{120}{360}=pi\cdot R^2\cdot\dfrac{1}{3}\)
=>\(Svp=R^2\left(pi\cdot\dfrac{1}{3}-\dfrac{\sqrt{3}}{4}\right)\)
a: góc BOC=2*góc A=90 độ
=>OB^2+OC^2=BC^2
=>2*R^2=2^2=4
=>R=căn 2
\(S_{\left(O\right)}=R^2\cdot pi=2pi\left(cm^2\right)\)
b: \(S_{q\left(BOC\right)}=pi\cdot2\cdot\dfrac{90}{360}=\dfrac{1}{2}\cdot pi\left(cm^2\right)\)
\(S_{BOC}=\dfrac{1}{2}\cdot OB\cdot OC=\dfrac{1}{2}\cdot2=1\)
=>\(S_{viênphân}=\dfrac{1}{2}\cdot3.14-1=0.57\left(cm^2\right)\)
a, Chứng minh được ∆COD đều => A M B ^ = 60 0
b, A B C ^ = 30 0 => A O C ^ = 60 0 => l A C ⏜ = πR 3
Tam giác OAB là tam giác đều có cạnh R= 5,1 cm.
Công thức tính diện tích tam giác đều cạnh a là:
Do đó, diện tích tam giác đều OAB cạnh OA= R = 5,1 cm là:
Diện tích hình quạt tròn AOB là:
Từ (1) và (2) suy ra diện tích hình viên phân là:
Kiến thức áp dụng
+ Diện tích tam giác đều cạnh a là:
+ Diện tích hình quạt tròn bán kính R, cung nº được tính theo công thức: