Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có ÐOMP = 900 ( vì PM ^ AB ); ÐONP = 900 (vì NP là tiếp tuyến ).
Như vậy M và N cùng nhìn OP dưới một góc bằng 900 => M và N cùng nằm trên đường tròn đường kính OP => Tứ giác OMNP nội tiếp.
2. Tứ giác OMNP nội tiếp => ÐOPM = Ð ONM (nội tiếp chắn cung OM)
Tam giác ONC cân tại O vì có ON = OC = R => ÐONC = ÐOCN
=> ÐOPM = ÐOCM.
Xét hai tam giác OMC và MOP ta có ÐMOC = ÐOMP = 900; ÐOPM = ÐOCM => ÐCMO = ÐPOM lại có MO là cạnh chung => DOMC = DMOP => OC = MP. (1)
Theo giả thiết Ta có CD ^ AB; PM ^ AB => CO//PM (2).
Từ (1) và (2) => Tứ giác CMPO là hình bình hành.
3. Xét hai tam giác OMC và NDC ta có ÐMOC = 900 ( gt CD ^ AB); ÐDNC = 900 (nội tiếp chắn nửa đường tròn ) => ÐMOC =ÐDNC = 900 lại có ÐC là góc chung => DOMC ~DNDC
=> => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.
.
a. Xét (o) , có:
\(AB\perp CD=\left\{O\right\}\)
=> \(\widehat{COB}=\widehat{COA=}90^o\)
Mà \(M\in CD\)
=> \(\widehat{MOB}=\widehat{MOA}=90^o\)
Ta có: \(\widehat{ANB}\)là góc nội tiếp chắn nửa đường tròn đường kính AB
=> \(\widehat{ANB}=90^o\)
Xét tứ giác AOMN, có:
\(\widehat{ANB+}\widehat{MOA}=90^o+90^o=180^o\)
\(\widehat{ANB}\)và \(\widehat{MOA}\)là 2 góc đối nhau
=> AOMN là tứ giác nội tiếp (dhnb) (đpcm)
Tự vẽ hình:
a) ta có: Nx là tiếp tuyến => \(\widehat{PNO}=90\)
d\(⊥\)AB=> \(\widehat{OMP}=90\)
=> tứ giác OMNP nội tiếp
b) Ta có: CO II MP ( cùng vuông góc với AB)
Tứ giác OMNP nội tiếp => \(\widehat{OPM}=\widehat{ONM}\) (1)
Tam giác cân OCN ( OC=ON=R) có: \(\widehat{OCN}=\widehat{ONM}\) (2)
Từ (1), (2) => \(\widehat{OPM}=\widehat{OCM}\)(**)
Từ (*), (**) => OCMP là hình bình hành
c) Xét \(\Delta OCN\)là tam giác cân
và \(\Delta MCD\)là tam giác cân ( do C,D đối xứng nhau qua AB) có chung góc C
=> \(\Delta OCN\)đồng dạng \(\Delta MCD\)
=>\(\frac{CN}{CD}=\frac{OC}{CM}\Rightarrow CN.CM=OC.CD=2R^2=const\)
Vậy CN.CM không đổi (ĐPCM)