K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Theo giả thiết ta có tam giác đáy ABC là tam giác đều.

Gọi I là trung điểm của cạnh BC và O là tâm của tam giác đều ABC. Theo giả thiết ta có SA = a. Đặt OI = r , SO = h , ta có AO = 2r và SIA = α .

Do đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy a 2 = r 2 tan 2 α + 4 r 2 = r 2 tan 2 α + 4

Ta suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi S xq  là diện tích xung quanh của hình trụ ta có công thức  S xq  = 2 π rl trong đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

và Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

Các mặt bên SAB, SBC , SCA là những phần của ba mặt phẳng không song song với trục và cũng không vuông góc với trục nên chúng cắt mặt phẳng xung quanh của hình trụ theo những cung elip. Các cung này có hình chiếu vuông góc trên mặt phẳng (ABC) tạo nên đường tròn đáy của hình trụ.

14 tháng 12 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi I là trung điểm của cạnh BC và O là tâm của tam giác đều ABC. Theo giả thiết ta có SA = SB = SC = a và ∠ SIO = α. Đặt OI = r, SO = h, ta có AO = 2r và

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó a 2 = r 2 tan 2 α + 4 r 2 = r 2 tan 2 α + 4

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hình nón nội tiếp có đường sinh là :

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích xung quanh của hình nón nội tiếp hình chóp S.ABC là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

24 tháng 10 2019

Đáp án B

Từ giả thiết ta có SO là trục của đường tròn ngoại tiếp tam giác ABC và SA=SB=a. Trong mặt phẳng (SAO), trung trực của cạnh SA cắt SO tại I thì I là tâm của mặt cầu ngoại tiếp hình chóp. Khi đó ta tính được:

17 tháng 8 2019

10 tháng 4 2017

25 tháng 11 2017

Chọn đáp án A

13 tháng 8 2016

+)Gọi H là chân đường cao hạ từ A - -> BC 
Tam giác AHC vuông tại H nên 
AH = √(a² -a²/4) = a√3/2 
Diện tích tam giác ABC là S(ABC) = 1/2.AH.BC= 1/2.a²√3/2 
(dvdt) 
+)Từ S hạ SK ┴ AH , Kết hợp AH ┴ BC ta có SK ┴ (ABC) 
Hay SK là đường cao của hình chóp đều SABC 
+) Bài cho góc giữa các mặt bên với đáy là 60 độ nên 
góc giữa (SH,HK) = 60 độ 
Tam giác vuông SKH có SK = HK.tan(60) 
Tam giác vuông BKH có HK = a/2.tan(30) = a√3/6 
- - > SK = a√3/6.tan(60) = a/2 
Vậy V(SABC) =1/3.SK.S(ABC) = 1/3.a/2.1/2.a²√3/2 
= a³√3/24 (dvtt)

3 tháng 7 2019

Mình không thạo vẽ hình trên này nên bạn tự vẽ hình nhé.

Gọi K là hình chiếu vuông góc của S trên BC.

Giả sử \(\overrightarrow{CK}=x\overrightarrow{CB}\left(0< x< 1\right)\)

Đặt \(SC=ka\Rightarrow\left\{{}\begin{matrix}BC=a\sqrt{k^2+4}\\AC=a\sqrt{k^2+8}\end{matrix}\right.\)

Ta có: \(\dfrac{1}{SK^2}=\dfrac{1}{SB^2}+\dfrac{1}{SC^2}=\dfrac{1}{\left(2a\right)^2}+\dfrac{1}{\left(ka\right)^2}\)

\(\Rightarrow SK=\dfrac{2ka}{\sqrt{k^2+4}}\)

Ta có:

\(\left(\left(SBC\right);\left(ABC\right)\right)=45^0\)

\(\Rightarrow\left(AB;SK\right)=45^0\)

\(\Leftrightarrow\dfrac{\overrightarrow{AB}.\overrightarrow{SK}}{AB.SK}=cos45^0\Leftrightarrow\dfrac{\overrightarrow{AB}.\overrightarrow{SK}}{AB.SK}=\dfrac{\sqrt{2}}{2}\)

Lại có:

\(\overrightarrow{AB}.\overrightarrow{SK}=\left(\overrightarrow{SB}-\overrightarrow{SA}\right).\left[x\overrightarrow{SB}+\left(1-x\right)\overrightarrow{SC}\right]\)

\(=xSB^2-x\overrightarrow{SA}.\overrightarrow{SB}+\left(x-1\right).\overrightarrow{SC}.\overrightarrow{SA}\)

\(=x.4a^2-x.4a^2.\dfrac{1}{2}+\left(x-1\right).\dfrac{4a^2+k^2a^2-a^2\left(k^2+8\right)}{2}\)

\(=2xa^2+\left(x-1\right).\left(-2a^2\right)=2a^2\)

\(\Rightarrow\dfrac{\sqrt{2}}{2}=\dfrac{2a^2}{2a.\dfrac{2ka}{\sqrt{k^2+4}}}\Leftrightarrow k=2\)

Do đó:

\(\left\{{}\begin{matrix}SC=2a\\BC=2a\sqrt{2}\\AC=2a\sqrt{3}\end{matrix}\right.\)

Ta có:

\(R=\sqrt{R_{SAB}^2+R_{ABC}^2-\dfrac{AB^2}{4}}\)

\(=\sqrt{\left(\dfrac{2a\sqrt{3}}{3}\right)^2+\left(a\sqrt{3}\right)^2-\dfrac{\left(2a\right)^2}{4}}=\dfrac{a\sqrt{30}}{3}\)

\(\Rightarrow S=4\pi R^2=4\pi.\dfrac{10}{3}a^2=\dfrac{40}{3}\pi a^2\)

13 tháng 12 2023

dạ em nhờ các anh chị, các bạn giải giúp mình bài toán này với ạ!