K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
ND
0
S
2
LT
1
31 tháng 1 2018
do số chính phương khi chia cho 3 có số dư là 0 hoặc 1 mà n là số nguyên tố nên n^2 có dạng 3k+1
Ta có:n^2+2018=3k+1+2018=3k+2019
do 3k chia hết cho 3,2019chia hết cho 3
nên 3k+2019 là hợp số hay n^2+2018 là hợp số
Vậy không có số nguyên tố n nào thỏa mãn đề bài
LQ
0
HN
2
8 tháng 3 2018
Vì n là số nguyen tố lon hon 3 nên n co dang : 3k+1;3k+2
TH1 : n=3k+1
=> n^2+2018=(3k+1)(3k+1)+2018=9k^2+3k+3k+1+2018=9k^2+6k+2019
TH2 : n=3k+2
=> n^2+2018=(3k+2)(3k+2)+2018=9k^2+6k+6k+4+2018=9k^2+12k+2022 chia het cho 3
Vay n^2+2018 la hop so
8 tháng 3 2018
n là số nguyên tố > 3
=> n ko chia hết cho 3
=> n^2 chia 3 dư 1
=> n^2+2019 chia hết cho 3
Mà n^2+2019 > 3 => n^2+2019 là hợp số
Tk mk nha
KT
1
ND
0
NH
1
bạn ghi nhầm đề
Hiệu mà bạn