K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 12 2018

\(log_2\left(1+log_{3^{-2}}x-log_{3^2}x\right)< 1\)

\(\Leftrightarrow log_2\left(1-\dfrac{1}{2}log_3x-\dfrac{1}{2}log_3x\right)< 1\)

\(\Leftrightarrow log_2\left(1-log_3x\right)< 1\)

\(\Leftrightarrow0< 1-log_3x< 2\)

\(\Leftrightarrow-1< log_3x< 1\)

\(\Leftrightarrow\dfrac{1}{3}< x< 3\Rightarrow\left\{{}\begin{matrix}a=3\\b=3\end{matrix}\right.\) \(\Rightarrow a=b\)

Bài 1: Cho ABC vuông tại A có . Trên cạnh BC lấy điểm D sao cho BA = BD. Tia phân giác của cắt AC tại I a/ Chứng minh BAD đều b/ Chứng minh IBC cân c/ Chứng minh D là trung điểm của Bc d/ ChoAB = 6cm. Tính BC, AC Bài 2 : Cho tam giác ABC vuông tại A và = 600 a) So sánh AB và AC ? b) Trên cạnh BC lấy điểm D sao cho BD = AB. Qua D dựng đường thẳng vuông góc với BC cắt tia đối tia AB tại E. Chứng minh :...
Đọc tiếp

Bài 1: Cho ABC vuông tại A có . Trên cạnh BC lấy điểm D sao cho BA = BD. Tia phân giác của cắt AC tại I
a/ Chứng minh BAD đều
b/ Chứng minh IBC cân
c/ Chứng minh D là trung điểm của Bc
d/ ChoAB = 6cm. Tính BC, AC


Bài 2 : Cho tam giác ABC vuông tại A và = 600
a) So sánh AB và AC ?
b) Trên cạnh BC lấy điểm D sao cho BD = AB. Qua D dựng đường thẳng vuông góc với BC cắt tia đối tia AB tại E. Chứng minh : rABC = rDBE?
c) Gọi H là giao điểm của ED và AC . Chứng minh: tia BH là tia phân giác của ?
d) Qua B dựng đường vuông góc với AB cắt đường thẳng ED tại K.
Chứng minh : rHBK đều ?

Bài 3: Cho cân tại A (). Kẻ BDAC (DAC), CE AB (E AB), BD và CE cắt nhau tại H.
a) Chứng minh:
b) Chứng minh: cân
c) Chứng minh: ED // BC
d) AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. Chứng minh: vuông.

0
AH
Akai Haruma
Giáo viên
29 tháng 5 2018

Lời giải:

Ta có:

\(\text{VT}=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}\)

\(=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)

\(=(a+b+c)-2\left(\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\right)\)

Áp dụng BĐT Cauchy cho các số dương:

\(\text{VT}\geq (a+b+c)-2\left(\frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\right)\)

\(\Leftrightarrow \text{VT}\geq (a+b+c)-\frac{2}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)

Áp dụng BĐT Cauchy tiếp:

\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}\)

\(=\frac{2(ab+bc+ac)+3}{3}\leq \frac{2.\frac{(a+b+c)^2}{3}+3}{3}\)

Do đó: \(\text{VT}\geq (a+b+c)-\frac{2}{3}.\frac{2.\frac{(a+b+c)^2}{3}+3}{3}=1\) do $a+b+c=3$

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=1$

NV
14 tháng 11 2018

Bạn biết quy tắc "trong trái - ngoài cùng" kinh điển liên quan 2 nghiệm phương trình bậc 2 đúng không ạ?

\(-2\le x_1\le x_2\) nên -2 nằm ngoài khoảng 2 nghiệm. Mà theo quy tắc "trong trái - ngoài cùng" thì ta sẽ có \(2.f\left(-2\right)\le0\) (1)

Bây giờ -2 đã nằm bên ngoài khoảng 2 nghiệm, bây giờ ta tìm thêm điều kiện để nó nằm bên trái nghiệm nhỏ hơn (ta quy ước là \(x_1\) đi) là xong. Mà \(-2\le x_1\) nên -2 cũng nhỏ hơn điểm nằm giữa x1 và x2 hay \(-2\le\dfrac{x_1+x_2}{2}=\dfrac{S}{2}\)

Tại sao ta sử dụng điểm nằm giữa kia mà ko sử dụng trực tiếp x1, vì sử dụng điểm đó thì ta có thể dùng Viet rất tiện, trong khi dùng x1 thì theo công thức nghiệm sẽ xuất hiện căn thức, giải ra tốn thời gian hơn.

Mặc dù nếu thích, bạn vẫn có thể dùng điều kiện \(-2\le x_1\) để giải, kết quả vẫn ra như vậy.

NV
14 tháng 11 2018

Ấy, đoạn trên chỗ (1) gõ nhầm rồi, \(1.f\left(-2\right)\ge0\) chứ

NV
11 tháng 3 2019

\(I=\int e^xcosxdx\Rightarrow\left\{{}\begin{matrix}u=cosx\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-sinx.dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=e^xcosx+\int e^xsinx.dx=e^xcosx+I_1\)

\(I_1=\int e^xsinx\Rightarrow\left\{{}\begin{matrix}u=sinx\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=cosx.dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I_1=e^xsinx-\int e^xcosx.dx=e^x.sinx-I\)

\(\Rightarrow I=e^xcosx+e^xsinx-I\Rightarrow2I=e^x\left(cosx+sinx\right)\)

\(\Rightarrow I=e^x\left(\frac{1}{2}cosx+\frac{1}{2}sinx\right)+C\Rightarrow\left\{{}\begin{matrix}A=\frac{1}{2}\\B=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow A+B=1\)

11 tháng 2 2020

I think that we have to prove \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-2\)

We have \(a+b+c=abc\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

We have \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=0\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=0\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=0\)( Because \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\))

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-2\)

So...

4 tháng 4 2018

óc chó tự nghĩ đi nhá ahihihi