Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)
=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)
Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)
a) Nếu m = -1 thì : \(4x-3=0\Leftrightarrow x=\frac{3}{4}\) => pt có một nghiệm
Nếu \(m\ne-1\) , xét \(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)=m^2-2m+1-\left(m^2-m-2\right)=-m+3\)
Để pt có hai nghiệm phân biệt thì \(\Delta>0\) , tức là \(3-m>0\Leftrightarrow m< 3\)
Vậy để pt có hai nghiệm phân biệt thì \(\begin{cases}m< 3\\m\ne-1\end{cases}\)
b) Thay x = 2 vào pt đã cho , tìm được m = -6
Suy ra pt : \(-5x^2+14x-8=0\Leftrightarrow\left(5x-4\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{4}{5}\end{array}\right.\)
Vậy nghiệm còn lại là x = 4/5
c) Áp dụng hệ thức Vi-et , ta có : \(\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-2\end{cases}\)
\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow4\left(x_1+x_2\right)=7x_1.x_2\)
\(\Rightarrow4.\left(2m-2\right)=7.\left(m-2\right)\Leftrightarrow8m-8=7m-14\Leftrightarrow m=-6\)
d) Ta có : \(A=2\left(x_1^2+x_2^2\right)+x_1.x_2=2\left(x_1+x_2\right)^2-3x_1.x_2=8\left(m-1\right)^2-3\left(m-2\right)\)
\(=8m^2-19m+14=8\left(m-\frac{19}{16}\right)^2+\frac{87}{32}\ge\frac{87}{32}\)
=> Min A = 87/32 <=> m = 19/16
[m=338m=−2
Giải thích các bước giải:
Để phương trình 2x2+(2m−1)x+m−1=02x2+(2m−1)x+m−1=0 có 2 nghiệm phân biệt thì:
⇔Δ>0⇔(2m−1)2−4.2.(m−1)>0⇔4m2−4m+1−8m+8>0⇔4m2−12m+9>0⇔(2m−3)2>0⇔m≠32⇔Δ>0⇔(2m−1)2−4.2.(m−1)>0⇔4m2−4m+1−8m+8>0⇔4m2−12m+9>0⇔(2m−3)2>0⇔m≠32
Theo định lý Vi-et: {x1+x2=1−2m2x1.x2=m−12{x1+x2=1−2m2x1.x2=m−12
Lại có: 3x1−4x2=113x1−4x2=11 (giả thiết)
Ta có hệ:
{3x1−4x2=11x1+x2=1−2m2⇔{3x1−4x2=114x1+4x2=2(1−2m)⇔{7x1=13−4mx1+x2=1−2m2⇔{x1=13−4m7x2=−1914−3m7{3x1−4x2=11x1+x2=1−2m2⇔{3x1−4x2=114x1+4x2=2(1−2m)⇔{7x1=13−4mx1+x2=1−2m2⇔{x1=13−4m7x2=−1914−3m7
Vì x1x2=m−12x1x2=m−12 nên 13−4m7.(−1914−3m7)=m−1213−4m7.(−1914−3m7)=m−12
[m=338m=−2[m=338m=−2
(thỏa mãn điều kiện xác định)
Vậy với m=−2m=−2 và m=338m=338 thì phư
Để pt có 2 nghiệm phân biệt \(x_1;x_2\)thì \(\Delta>0\)
\(\Leftrightarrow\left(2m-1\right)^2-4\cdot2\left(m-1\right)>0\)
\(\Rightarrow m\ne15\left(1\right)\)
Mặt khác theo Vi-et và giả thiết ta có:
\(\hept{\begin{cases}x_1+x_2=-\frac{2m-1}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)và \(3x_1-4x_2=11\)
\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_1=\frac{7m-7}{26-8m}\end{cases}}\)và \(3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\)
Giải pt \(3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\)ta được \(\hept{\begin{cases}m=-2\\m=4,125\end{cases}\left(2\right)}\)
ĐK (1) và (2) ta có: Với m=-2 hoặc m=4,125 thì pt có 2 nghiệm phân biệt thỏa mãn 3x1-4x2=11
- \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
- Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
- từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
C1, Ta có : \(\Delta=49-4m-28=21-4m\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow m< \frac{21}{4}\)
Pt có 2 nghiệm \(x_1=\frac{7-\sqrt{21-4m}}{2}\)
\(x_2=\frac{7+\sqrt{21-4m}}{2}\)
Do x1 < x2 nên để pt có 2 nghiệm đều lớn hơn 2 thì x1 > 2
Tức là \(\frac{7-\sqrt{21-4m}}{2}>2\)
\(\Leftrightarrow7-\sqrt{21-4m}>4\)
\(\Leftrightarrow\sqrt{21-4m}< 3\)
\(\Leftrightarrow21-4m< 9\)
\(\Leftrightarrow4m>12\)
\(\Leftrightarrow m>3\)
Kết hợp vs điều kiện delta của x ta đc \(3< m< \frac{21}{4}\)
Vậy ....
\(2,Let\left(x+1\right)^2=a\left(a\ge0\right)\)
\(\Rightarrow a=x^2+2x+1\)
Pt trở thành \(\left(a+4\right)\left(a-7\right)-3m+2=0\)
\(\Leftrightarrow a^2-3a-28-3m+2=0\)
\(\Leftrightarrow a^2-3a-3m-26=0\)(*)
Pt này có 2nghiệm phân biệt khi \(\Delta>0\)\(\Leftrightarrow9+12m+104>0\Leftrightarrow m>-\frac{113}{12}\)
Với mỗi giá trị của a ta lại tìm đc 2 giá trị của x nên để pt ban đầu có 4 nghiệm phân biệt thì pt (*) phải có 2 nghiệm dương phân biệt
Tức là \(\hept{\begin{cases}S>0\\P>0\end{cases}\Leftrightarrow\hept{\begin{cases}-3>0\left(LuonĐung\right)\\-3m-26>0\end{cases}}}\)
\(\Leftrightarrow m< -\frac{26}{3}\)
Do đó \(-\frac{113}{12}< m< -\frac{26}{3}\)