Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1: Gọi đa thức thương là Q(x)
Vì x^4 : x^2 = x^2
=> đa thức có dạng x^2+mx+n
Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2
=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)
x^4+ 0x^3 - 3x^2 +ax+b = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n
x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n
<=>| 0 = m-3 <=> | m = 3
| 3=3m-n-2 | b= 8
| a=2m-3n | n = 4
| b = 2n | a = -6
Vậy a= -6, b= 8
a: \(=\dfrac{x^4+15x+7}{x^4+15x+7}\cdot\dfrac{x}{14x^2+1}\cdot\dfrac{4x^3+4}{2x^3+2}=\dfrac{2x}{14x^2+1}\)
b: \(=\dfrac{x^7+3x^2+2}{x^7+3x^2+2}\cdot\dfrac{x^2+x+1}{x^3-1}\cdot\dfrac{3x}{x+1}\)
\(=\dfrac{1}{x-1}\cdot\dfrac{3x}{x+1}=\dfrac{3x}{x^2-1}\)
a) Dư của f(x ) chia cho x+2 là f(-2)
Áp dụng định lý Bơ-zu ta có :
\(f\left(-2\right)=\left(-2\right)^3+3.\left(-2\right)^2+a\)
\(=-8+12+a\)
\(=4+a\)
\(\Leftrightarrow a=-4\)
Vậy để f(x) chia hết cho x+2 => a= -4
b) Dư của f(x ) chia cho x-1 là f(1)
Áp dụng định lí Bơ-zu ta có :
\(f\left(1\right)=1^2-3.1+a\)
\(=1-3+a\)
\(=-2+a\)
\(\Rightarrow a=2\)
Vậy ..............
c)
Đặt phép chia dọc theo đa thức 1 biến đã sắp xếp
d) Theo định lí Bơ-zu ta có :
\(f\left(x\right):x+1\)có dư là \(f\left(-1\right)\)
\(f\left(-1\right)=\left(-1\right)^3+a.\left(-1\right)+b\)
\(=-a+b-1\)
Mà theo đề bài cho dư = 7
\(\Rightarrow-a+b-1=7\)
\(\Rightarrow-a+b=8\) (1)
Tương tự :
\(f\left(x\right):x-1\)có dư là \(f\left(1\right)\)
\(f\left(1\right)=1^3+a.1+b\)
\(=a+b+1\)
Theo đề bài cho dư 7
\(\Rightarrow a+b+1=7\)
\(\Rightarrow a+b=6\)(2)
Từ (1) và (2) ( cộng vế với vế)
\(\Rightarrow\hept{\begin{cases}a+b=6\\-a+b=8\end{cases}}\)
\(\Rightarrow2b=14\)
\(\Rightarrow b=7\)
\(\Leftrightarrow a+7=6\)
\(\Rightarrow a=-1\)
Vậy \(f\left(x\right)=x^3-x+7\)
a: \(\Leftrightarrow3x^3+x^2+9x^2+3x-3x-1+a-4⋮3x+1\)
=>a-4=0
hay a=4
c: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Xin phép tách nhé !!!
\(P\left(x\right)=Q\left(x\right)\left(x+3\right)+1;P\left(x\right)=R\left(x\right)\left(x-4\right)+8\)
\(\left(x+3\right)\left(x-4\right)\) là bậc 2 nên số dư bậc nhất:ax+b
\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\)
Áp dụng định lý Bezout:
\(P\left(-3\right)=1;P\left(4\right)=8\)
\(\Rightarrow1=P\left(-3\right)=-3a+b\)
\(8=P\left(4\right)=4a+b\)
Ta có \(-3a+b=1;4a+b=8\Rightarrow7a=7\Rightarrow a=1\Rightarrow b=4\)
Khi đó:\(P\left(x\right)=\left(x+3\right)\left(x+4\right)3x+x+4\)
Nếu bạn rảnh thì phá ngoặc ra thành đa thức bậc 3 cũng được nha,thế thì hay hơn,mà mình lại nhác :V
\(\left(x+1\right)\left(6x+8\right)\left(6x+7\right)^2=12\)
\(\Leftrightarrow\left(6x+6\right)\left(6x+8\right)\left(6x+7\right)^2=72\)
Đặt \(6x+7=t\)
Ta có:\(\left(t-1\right)\left(t+1\right)t^2=72\)
\(\Leftrightarrow t^2\left(t^2-1\right)=72\)
\(\Leftrightarrow t^4-t^2-72=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+3\right)\left(t^2+8\right)=0\)
\(\Leftrightarrow t=3;t=-3\)
\(\Leftrightarrow6x+7=3;6x+7=-3\)
\(\Leftrightarrow x=-\frac{2}{3};x=-\frac{5}{3}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{3};-\frac{5}{3}\right\}\)
a) Có \(\dfrac{x^4-x^3+6x^2-x+n}{x^2-x+5}\) được thương là x2 +1 và dư n-5
Vậy để đa thức trên chia hết thì n-5 = 0 => n = 5
b) Có \(\dfrac{3x^3+10x^2-5+n}{3x+1}\) được thương là x2 + 3x -1 và dư -4 +n
Vậy để đa thức trên chia hết thì -4 + n = 0 => n = 4
c) Theo đề bài ta có:
\(\dfrac{2n^2+n-7}{n-2}=2n+5+\dfrac{3}{n-2}\)
Với n nguyên để đa thức trên chia hết thì ( n - 2) phải thuộc ước của 3
Từ đó, ta có:
n-2 | n |
-1 | 1 |
1 | 3 |
-3 | -1 |
3 | 5 |
Vậy khi n đạt những giá trị trên thì đa thức trên sẽ chia hết
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
Ta có phép chia
Dựa vào kết quả của phép chia trên,, ta có đa thức dư là - 3x - 8.
Chọn đáp án B.