K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

\(\frac{1}{3}-\frac{1}{2027}\)

26 tháng 4 2017

Đặt A=\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}\)

Ta có:\(\frac{1}{4^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)

         \(\frac{1}{5^2}< \frac{1}{4\cdot5}=\frac{1}{4}-\frac{1}{5}\)

               .............................

          \(\frac{1}{2011^2}< \frac{1}{2010\cdot2011}=\frac{1}{2010}-\frac{1}{2011}\)

\(\Rightarrow A< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\cdot\cdot\cdot+\frac{1}{2010}-\frac{1}{2011}\)

         \(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)

Vậy A<\(\frac{1}{3}\)hay \(\frac{1}{4^2}+\frac{1}{5^2}+\cdot\cdot\cdot+\frac{1}{2011^2}< \frac{1}{3}\)

26 tháng 4 2017

\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)

Gọi \(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)là \(S\)

Ta có:

\(S=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)

\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)

Vì \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< S\)mà \(S< \frac{1}{3}\)\(\Rightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3}\)

18 tháng 10 2017

1/4+2/5+6/8+2/15+6/7

=(1/4+6/8)+(2/5+2/15)+6/7

=(2/8+6/8)+(6/15+2/15)+6/7

=1+8/15+6/7

=1+56/105+90/105

=1+146/105

=1+105/105+41/105

=1+1+41/105

=2+41/105

=2 và 41/105

2 và 41/105 là hỗn số nha

18 tháng 10 2017

1/4+2/5+6/8+2/15+6/7

Ta có:

1/4=1-3/4

6/8=3/4

2/15=2/3*5=1/3-1/5

==> 1-3/4+2/5+3/4+1/3-1/5+6/7 

=1+1/3+1/5+6/7

=(105+35+21+90)/105

=251/105.

23 tháng 4 2019

Chỉ có một \(\frac{3}{8}\)thôi nha

7 tháng 6 2020

Ta có : \(\frac{1}{4}+\frac{1}{28}+....+\frac{1}{9700}=\frac{0,33x}{2009}\)

=> \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}=\frac{0.99x}{2009}\)

=> \(\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)=\frac{0,33x}{2009}\)

=> \(\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{0,33x}{2009}\)

=> \(\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{0,33x}{2009}\)

=> \(\frac{33}{100}=\frac{0,33x}{2009}\Rightarrow33.2009=100.0,33x\)

=> 33.2009 = 33x

=> x = 2009

7 tháng 6 2020

Thanks bn nhìu nha, mình sẽ K cho bn ngay. Bn kb với mình nha.

9 tháng 4 2017

a) \(3.\frac{5}{4}\)\(-\frac{3^2}{4}\)\(=\frac{3}{2}\)

b)\(\frac{-21}{10}\)\(+\frac{21}{10}\)\(-\frac{3}{4}\)\(-\frac{3}{4}\)\(=\left(\frac{-21}{10}+\frac{21}{10}\right)-\left(\frac{3}{4}+\frac{3}{4}\right)\)

\(=0-\frac{3}{2}\)\(=\frac{-3}{2}\)

c) \(\frac{3}{4}\)\(+\frac{9}{5}-\frac{3}{2}-1\)\(=\left(\frac{3}{4}-\frac{3}{2}\right)+\left(\frac{9}{5}-1\right)\)\(=\frac{-3}{4}\)\(+\frac{4}{5}\)\(=\frac{1}{20}\)

3 tháng 8 2017

\(A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(\Leftrightarrow A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(\Leftrightarrow A=1-\frac{1}{46}\)

\(\Leftrightarrow A=\frac{45}{46}\)

3 tháng 8 2017

Các bạn ơi. Chỗ cuối ko có số 4 đâu nha. Mình viết lộn