Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I can help you!
Giải
Ta có:\(\frac{x}{5}+1=\frac{1}{y-1}\)
\(\Rightarrow\frac{x}{5}+\frac{5}{5}=\frac{1}{y-1}\)
\(\Rightarrow\frac{x+5}{5}=\frac{1}{y-1}\)
\(\Leftrightarrow\left(x+5\right).\left(y-1\right)=5\)
Vì \(x;y\in Z\)
\(\Rightarrow x+5;y-1\in Z\)
\(\Rightarrow x+5;y-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta lập bảng:
x + 5 | -5 | -1 | 1 | 5 |
y - 1 | -1 | -5 | 5 | 1 |
x | -10 | -6 | -4 | 0 |
y | 0 | -4 | 6 | 2 |
Vậy có 4 cặp ( x ; y ) cần tìm.
~~~~~~~~ *** ~~~~~
Gọi d = UCLN (12n+1; 30n+2)
Ta có: 12n+1 chia hết cho d => 5(12+1) chia hết cho d
vừa nãy mk ấn nhầm, xin lỗi nhé
Gọi d = UCLN(12n+1; 30n+2)
Ta có: 12n+1 chia hết cho d => 5.(12n+1) chia hết cho d
30n+2 chia hết cho d => 2.(30n+2) chia hết cho d
Suy ra 5.(12n+1) - 2.(30n+2) chia hết cho d
=> 60n +5 - 60n +4 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản
\(\frac{n+1}{n-2}\)
\(=\frac{n+3-2}{n-2}\)
\(=\frac{n-2+3}{n-2}\)
\(=\frac{n-2}{n-2}+\frac{3}{n-2}\)
Suy ra n - 2 thuộc ước của 3
Ta có Ư( 3 ) = { -1;-3;1;3 }
Do đó
n - 2 = -1
n = -1 + 2
n = 1
n - 2 = -3
n = -3 + 2
n = -1
n - 2 = 1
n = 1 + 2
n = 3
n - 2 = 3
n = 3 + 2
n = 5
Vậy n = 1;-1;3;5
Ta có:\(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\left(n\ne2\right)\)
Đặt \(A=\frac{n+1}{n-2}\)
Để A nguyên thì 3 chia hết cho n-2. Hay \(\left(n-2\right)\inƯ\left(3\right)\)
Vậy Ư (3) là:[1,-1,3,-3]
Do đó ta có bảng sau:
n-2 | -3 | -1 | 1 | 3 |
n | -1 | 1 | 3 | 5 |
Vậy để A nguyên thì n=-1;1;3;5
a) Để A nguyên => 5 chia hết cho n - 2
n - 2 thuộc U(5) = {-5 ; -1 ; 1 ; 5}
n - 2 = -5 => n = -3
n - 2 = -1 => n = 1
n - 2 = 1 => n = 3
n - 2 = 5 => n = 7
Vậy n thuộc {-3 ; 1 ; 3 ; 7}
b) \(\frac{y}{3}-\frac{1}{x}=\frac{1}{3}\Leftrightarrow\frac{y}{3}-\frac{1}{3}=\frac{1}{x}\)
\(\frac{y-1}{3}=\frac{1}{x}\) <=> (y-1).x = 3
(y-1).x = 1.3 = (-1).(-3)
TH1: y - 1 = 1 => y = 2
=> x = 3
TH2: y - 1 = 3 => y = 4
=> x = 1
TH3: y - 1 = -1 => y = 0
=> x = -3
TH4: y - 1 = -3 => y = -2
=> x = -1
Vậy (x ; y) là (2 ; 3) ; (4 ; 1) ; (0 ; -3) ; (-2 ; -1)
a) Để A là 1 số nguyên thì n-2 \(\in\) Ư(5)={-1;-5;1;5}
Nếu n-2=-1 thì n=1
Nếu n-2=-5 thì n=-3
Nếu n-2=1 thì n=3
Nếu n-2=5 thì n=7
=>n \(\in\) {-3;1;3;7}
b) câu b này mik ko biết làm
a. 32 = 25 => n thuộc tập 1; 2; 3; 4
b. \(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)
\(\Rightarrow\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{4}+\frac{2}{3}=\frac{11}{12}\)
\(\Rightarrow x=\frac{12}{11}\)
c. p nguyên tố => \(p\ge2\) => 52p luôn có dạng A25
=> 52p+2015 chẵn
=> 20142p + q3 chẵn
Mà 20142p chẵn => q3 chẵn => q chẵn => q = 2
=> 52p + 2015 = 20142p+8
=> 52p+2007 = 20142p
2014 có mũ dạng 2p => 20142p có dạng B6
=> 52p = B6 - 2007 = ...9 (vl)
(hihi câu này hơi sợ sai)
d. \(17A=\frac{17^{19}+17}{17^{19}+1}=1+\frac{16}{17^{19}+1}\), \(17B=\frac{17^{18}+17}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
\(17^{19}+1>17^{18}+1\Rightarrow\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\)
\(\Rightarrow17A< 17B\)
\(\Rightarrow A< B\)
Mk sẽ giải từng câu :)
Bài 1 :
Gọi \(ƯCLN\left(2n+2;6n+5\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(2n+2\right)⋮d\\2\left(6n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+12⋮d\\12n+10⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(12n+12\right)-\left(12n+10\right)⋮d\)
\(\Rightarrow\)\(2⋮d\)
\(\Rightarrow\)\(d\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Mà \(6n+5\) không chia hết cho \(2\) và \(-2\) nên \(ƯCLN\left(2n+2;6n+5\right)=\left\{1;-1\right\}\)
Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản với mọi n
Chúc bạn học tốt ~
1. Gọi d = ƯCLN (2n+2,6n+5)
=>\(\hept{\begin{cases}2n+2\\6n+5\end{cases}}\)chia hết cho d
=>\(\hept{\begin{cases}3.\left(2n+2\right)\\6n+5\end{cases}}\)chia hết cho d
=>\(\hept{\begin{cases}6n+6^{\left(1\right)}\\6n+5^{\left(2\right)}\end{cases}}\)chia hết cho d
Từ (1) và (2) => (6n+6) - (6n+5) chia hết cho d
=> 6n + 6 - 6n - 5 chia hết cho d
=> 1 chia hết cho d
=> d =1
=> ƯCLN (2n+2,6n+5) = 1
Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản
2. Ta có:
B = 32. (\(\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+...+\frac{3}{67.70}\))
B = 32. (\(\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{67}-\frac{1}{70}\))
B = 32. (\(\frac{1}{10}-\frac{1}{70}\))
B = 27/35
Vì \(\frac{27}{35}< 1\)
=> B < 1
3. x + \(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{-37}{45}\)
x + ( \(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)
x + (\(\frac{1}{5}-\frac{1}{45}\)) = \(\frac{-37}{45}\)
x + \(\frac{8}{45}=\frac{-37}{45}\)
x = \(\frac{-37}{45}-\frac{8}{45}\)
x = -1
Ta có:
\(\frac{1}{-3}< \frac{x}{3}\le0\)
\(\Rightarrow\frac{1}{-3}< \frac{x}{3}\le\frac{0}{3}\)
\(\Rightarrow\frac{-1}{3}< \frac{x}{3}\le\frac{0}{3}\)
\(\Rightarrow-1< x\le0\)
\(\Rightarrow x=0\)
vậy: \(x=0\)
Đổi 1/-3 = -1/3 ; 0 = 0/3
Suy ra -1 < x <_ 0
Suy ra x = 0
Vậy x = 0