Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n+1}{n-2}\)
\(=\frac{n+3-2}{n-2}\)
\(=\frac{n-2+3}{n-2}\)
\(=\frac{n-2}{n-2}+\frac{3}{n-2}\)
Suy ra n - 2 thuộc ước của 3
Ta có Ư( 3 ) = { -1;-3;1;3 }
Do đó
n - 2 = -1
n = -1 + 2
n = 1
n - 2 = -3
n = -3 + 2
n = -1
n - 2 = 1
n = 1 + 2
n = 3
n - 2 = 3
n = 3 + 2
n = 5
Vậy n = 1;-1;3;5
Ta có:\(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\left(n\ne2\right)\)
Đặt \(A=\frac{n+1}{n-2}\)
Để A nguyên thì 3 chia hết cho n-2. Hay \(\left(n-2\right)\inƯ\left(3\right)\)
Vậy Ư (3) là:[1,-1,3,-3]
Do đó ta có bảng sau:
n-2 | -3 | -1 | 1 | 3 |
n | -1 | 1 | 3 | 5 |
Vậy để A nguyên thì n=-1;1;3;5
Gọi d = UCLN (12n+1; 30n+2)
Ta có: 12n+1 chia hết cho d => 5(12+1) chia hết cho d
vừa nãy mk ấn nhầm, xin lỗi nhé
Gọi d = UCLN(12n+1; 30n+2)
Ta có: 12n+1 chia hết cho d => 5.(12n+1) chia hết cho d
30n+2 chia hết cho d => 2.(30n+2) chia hết cho d
Suy ra 5.(12n+1) - 2.(30n+2) chia hết cho d
=> 60n +5 - 60n +4 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản
M=1+3+5....+(2n-1)
Số số hạng (2n-1-1)/2+1=n số hạng
Suy ra M=\(\frac{\left(1+2n-1\right).n}{2}=\frac{2.n^2}{2}=n^2\) vậy M là số chính phương
I can help you!
Giải
Ta có:\(\frac{x}{5}+1=\frac{1}{y-1}\)
\(\Rightarrow\frac{x}{5}+\frac{5}{5}=\frac{1}{y-1}\)
\(\Rightarrow\frac{x+5}{5}=\frac{1}{y-1}\)
\(\Leftrightarrow\left(x+5\right).\left(y-1\right)=5\)
Vì \(x;y\in Z\)
\(\Rightarrow x+5;y-1\in Z\)
\(\Rightarrow x+5;y-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta lập bảng:
x + 5 | -5 | -1 | 1 | 5 |
y - 1 | -1 | -5 | 5 | 1 |
x | -10 | -6 | -4 | 0 |
y | 0 | -4 | 6 | 2 |
Vậy có 4 cặp ( x ; y ) cần tìm.
~~~~~~~~ *** ~~~~~
\(M=1+3+5+........+\left(2n-1\right)\left(n\inℕ^∗\right)\)
Có: (2n-1-1):2+1=n số hạng
\(\Rightarrow M=\left(1+2n-1\right).n:2=2n.n:2=2n^2:2=n^2\)
Mà \(n\inℕ^∗\)
=>M là số chính phương
Vậy M là số chính phương
Chúc bn học tốt
Ta có: 3A=3+\(^{3^2+3^3+3^4+3^5+...+3^{2012}+3^{2013}}\)
\(\Rightarrow\)3A-A=2A=(\(3+3^2+3^3+3^4+...+3^{2013}\)) - (\(1-3^{ }-3^2-3^3-3^4-...-3^{2012}\))
\(\Rightarrow\)2A=\(3^{2013}-1\)\(\Rightarrow\)A=\(\left(3^{2013}-1\right):2\)\(\Rightarrow\)B-A=(\(^{\left(3^{2013}:2\right)-\left(\left(3^{2013}-1\right):2\right)\Rightarrow}\)
A = 1 + 3 + 32 +...+ 32012
3A = 3 + 32 + 33 +...+ 32013
3A - A = (3 + 32 + 33 +...+ 32013) - (1 + 3 + 32 +...+ 32012)
2A = 32013 - 1
A = \(\frac{3^{2013}-1}{2}\)
=> B - A = \(\frac{3^{2013}}{2}-\frac{3^{2013}-1}{2}=\frac{3^{2013}-\left(3^{2013}-1\right)}{2}=\frac{3^{2013}-3^{2013}+1}{2}=\frac{1}{2}\)
số số hạng của tổng M là :
[(2n-1) -1] :2+1
=( 2n-2) :2 +1
=2(n-1):2+1
= n-1+1=n
=>M = (2n-1+1)n:2
=> M = (2n-1+1) n:2
=> M = 2n.n:2 = n^2
=> M là số chính phương
No, I can't. I will help you tomorrow!