Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Thị Thơm bn tham khảo ở đây nhé:
Theo hệ thức lượng tam giác vuông
AC2 = HC x BC = 16 x BC
AH2 = HC x BH = 16 x BH
1/AH2 = 1/AC2 + 1/AB2
Thay 1,2 vào 3
1/16 x BH = 1/16 x BC + 1/152
Mặt khác:
BH = BC - HC = BC - 164
Thay vào 4
1/16 x ( BC - 16 ) = 1/16 x BC + 1/225
<=> 1/( BC - 16 ) - 1/BC = 16/225
<=> ( BC - BC + 16 )/(( BC - 16 ) x BC )
=> BC = 25 ( thỏa mãn ) BC = -9 ( loại )
Thay vào 1 ta có AC = 20 cm
2 ta có AH = 12 cm
Vậy: AH = 12 cm
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)
Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{\dfrac{9}{16}AC^2+AC^2}=\dfrac{5}{4}AC\)
\(\Rightarrow\dfrac{5}{4}AC=125\Rightarrow AC=100\Rightarrow AB=75\)
Áp dụng hệ thức lượng: \(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{75^2}{125}=45\\CH=\dfrac{AC^2}{BC}=\dfrac{100^2}{125}=80\end{matrix}\right.\)
A B C H
Xét \(\Delta ABH\)và \(\Delta CAH\)có
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với góc HAC)
suy ra: \(\Delta ABH~\Delta CAH\) (g.g)
suy ra: \(\frac{AB}{AC}=\frac{AH}{CH}=\frac{BH}{AH}\)
hay \(\frac{5}{6}=\frac{30}{CH}=\frac{BH}{30}\)
suy ra: \(CH=\frac{6.30}{5}=36\)
\(BH=\frac{5.30}{6}=25\)
b) CM: \(\Delta ABH~\Delta CAH\Rightarrow\frac{AB}{AC}=\frac{AH}{CH}\)
\(\Rightarrow\frac{5}{6}=\frac{30}{CH}\Rightarrow CH=36cm\)
từ \(\Delta ABH~\Delta CAH\Rightarrow\frac{AH}{HC}=\frac{BH}{AH}\Rightarrow BH.HC=AH^2\)
\(\Rightarrow BH=\frac{AH^2}{CH}=\frac{30^2}{36}=25cm\)