Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Ta có: \(0,0000 < d = 0,0001 < 0,001\) nên hàng thấp nhất mà d nhỏ hơn một đơn vị của hàng đó là hàng phần nghìn.
+) Vậy ta quy tròn a đến hàng phần nghìn. Số quy tròn của a là: 28,416.
a) Quy tròn số \(\overline a = \sqrt 3 \) đến hàng phần trăm, ta được số gần đúng là \(a = 1,73\)
Vi \(a < \overline a < 1,735\) nên \( \overline a -a < 1,735 -1,73 = 0,005\) do đó sai số tuyệt đối là
\({\Delta _a} = \left| {\overline a - a} \right| < 0,005.\)
Sai số tương đối là \({\delta _a} \le \frac{{0,005}}{{1,73}} \approx 0,3\% \)
b) Hàng của chữ số khác 0 đầu tiên bên trái của d=0,003 là hàng phần nghìn.
Quy tròn \(\overline a \) đến hàng phần nghìn ta được số gần đúng của \(\overline a \) là \(a = 1,732\).
c) Độ chính xác đến hàng phần chục nghìn
Quy tròn \(\overline a \) đến hàng phần chục nghìn ta được số gần đúng của \(\overline a \) là \(a = 1,7321\).
Yêu cầu ở câu a) là quy tròn đến hàng phần trăm còn yêu cầu ở câu b) chỉ yêu cầu quy tròn tức là ta phải quy tròn số với độ chính xác đã cho.
Hàng của chữ số khác 0 đầu tiên bên trái của độ chính xác \(d = 100\) là hàng trăm, nên ta quy tròn \(a = 6547\) đến hàng nghìn.
Vậy số quy tròn của a là 7 000.
Ta có: \(6547-100<\overline a< 6547+100 \Leftrightarrow 6447 <\overline a< 6647\) nên \(6447-7000 <\overline a -7000< 6647-7000 \Leftrightarrow -553 <\overline a -7000< -353 \Rightarrow |\overline a -7000| < 553\)
Sai số tương đối là \({\delta _a} \le \frac{{553}}{{\left| {7000} \right|}} = 7,9\% \)
a) Dạng chuẩn của số π với 10 chữ số chắc là 3,141592654 với sai số tuyệt đối ∆π≤ 10-9.
b) Viết π ≈ 3,14 ta mắc phải sai số tuyệt đối không quá 0,002. Trong cách viết này có 3 chữ số đáng tin.
Viết π ≈ 3,1416 ta mắc phải sai số tuyệt đối không quá 10-4. Viết như vậy thì số π này có 5 chữ số đáng tin.
Vì độ chính xác đến 10–10 (10 chữ số thập phân sau dấu ,) nên ta quy tròn đến 10–9 (9 chữ số thập phân sau dấu phẩy)
Vậy số quy tròn của a là 3,141592654.
Ta được
Ta chọn số gần đúng là 1,912931183.
Độ chính xác d=0,0005 nên ta có hàng làm tròn là hàng phần nghìn.
Số ở hàng phần nghìn là số 2, số bên phải là số 9>5 nên ta tăng 2 thêm 1 đơn vị và được số quy tròn của 1,912931183 là 1,913
a) Hàng của chữ số khác 0 đầu tiên bên trái của độ chính xác \(d = 0,0001\) là hàng phần chục nghìn.
Quy tròn \(\overline a = 1,8181818...\) đến hàng phần nghìn ta được số gần đúng của \(\overline a \) là \(a = 1,8182\)
b) Hàng của chữ số khác 0 đầu tiên bên trái của độ chính xác \(d = 0,0001\) là hành phần chục nghìn.
Quy tròn \(\overline b = - 1,6457513...\) đến hàng phần nghìn ta được số gần đúng của \(\overline b \) là \(b = - 1,6458\)