Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=2a^2+2b^2+2c^2+2ab+2bc+2ac\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(a^2+2ac+c^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2\)
b: \(=2\left(a-b\right)\left(c-b\right)-2\left(a-b\right)\left(c-a\right)+2\left(b-c\right)\left(a-c\right)\)
\(=\left(2a-2b\right)\left(c-b-c+a\right)+2\left(b-c\right)\left(a-c\right)\)
\(=\left(2a-2b\right)\left(a-b\right)+2\left(b-c\right)\left(a-c\right)\)
\(=2\left(a^2-2ab+b^2+ab-bc-ac+c^2\right)\)
\(=2\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=2a^2+2b^2+2c^2-2ab-2bc-2ac\)
\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\)
a) \(9x^2-6x+1\)
\(=\left(3x\right)^2-2\cdot3\cdot x+1^2\)
\(=\left(3x-1\right)^2\)
b) \(\left(2x+3y\right)^2+2\left(2x+3y\right)+1\)
\(=\left(2x+3y+1\right)^2\)
a) 16x2 - 9
= ( 4x )2 - 32
= ( 4x - 3 )( 4x + 3 )
b) 9a2 - 25b4
= ( 3a )2 - ( 5b2 )2
= ( 3a - 5b2 )( 3a + 5b2 )
c) 81 - y4
= 92 - ( y2 )2
= ( 9 - y2 )( 9 + y2 )
= ( 32 - y2 )( 9 + y2 )
= ( 3 - y )( 3 + y )( 9 + y2 )
d) ( 2x + y )2 - 1
= ( 2x + y )2 - 12
= ( 2x + y - 1 )( 2x + y + 1 )
e) ( x + y + z )2 - ( x - y - z )2
= [ x + y + z - ( x - y - z ) ][ x + y + z + ( x - y - z ) ]
= [ x + y + z - x + y + z ][ x + y + z + x - y - z ]
= [ 2y + 2z ].2x
= 2[ y + z ].2x
= 4x[ y + z ]
a) \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)
\(\Leftrightarrow a^2+2ab+b^2+b^2+2bc+c^2+a^2+2ac+c^2\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
nha
a)a+b+c=9
=>(a+b+c)2=81
=>a2+b2+c2+2ab+2bc+2ca=81
Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60
=>2(ab+bc+ca)=-60=>ab+bc+ca=-30
b)x+y=1
=>(x+y)3=1
=>x3+3x2y+3xy2+y3=1
=>x3+y3+3xy(x+y)=1
=>x3+y3+3xy=1(Do x+y=1)
c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)
=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0
d)đang tìm hướng giải
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=\frac{-1}{2}\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)( 1 )
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
Mà theo ( 1 ) nên có \(a^2+b^4+c^4=\frac{1}{2}\)
P/S:Hướng lm là như vầy nhé !
Cho a + b + c = 0 và a2 + b2 +c2= 1 Tính giá trị của biểu thức M = a4+b4+c4 Giúp mk vs nha!!
Tham khảo
a) (a + b + c)2 + a2 + b2 + c2
= (a2 + b2 + c2 + 2ab + 2bc + 2ac) + a2 + b2 + c2
= (a2 + b2 + 2ab) + (a2 + c2 + 2ac) + (b2 + c2 + 2bc)
= (a + b)2 + (a + c)2 + (b + c)2
b) 2(a - b)(c - b) + 2(b - a)(c - a) + 2(b - c)(a - c)
= 2ac - 2ab - 2bc + 2b2 + 2bc - 2ab - 2ac + 2a2 + 2ab - 2bc - 2ac + 2c2
= 2b2 - 2ab + 2a2 - 2bc - 2ac + 2c2
= (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2)
= (a - b)2 + (b - c)2 + (c - a)2
a) (a+b+c)2 +a2 +b2 +c2 = a2 +b2 +c2 +2ab+2bc +2ca + a2 +b2 +c2 = 2a2 +2b2 +2c2 +2ab+2bc+2ac
=(a2 +2ab+b2 ) +(c2 +2bc+b2) +(c2 +2ca +a2 ) =(a+b)2 +(b+c)2 +(c+a)2