Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/GỌI ƯCLN CỦA A VÀ B LÀ D
ƯCLN (4n+3;5n+1)=D
suy ra {4n+3 chia hết cho D
{5n+1 chia hết cho D
suy ra{5(4n+3) chia hết cho D
{4(5n+1) chi hết cho D
suy ra 5(4n+3)-4(5n+1) chia hết cho D
suy ra (20n+3)-(20n+1) chia hết cho D
suy ra 3 - 1 chia hết cho D
suy ra 2 chia hết cho D
SUY RA D thuộc Ư(2)
suy ra D =2 (tm đề bài)
VẬY ƯCLN của (a;b) = 2
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
d,Gọi ƯCLN (n.(n+1) /2 , 2n+1 ) =d
=) n.(n+1) /2 chia hết cho d
2n+1 chia hết cho d
=)2.(n.(n+1) /2) chia hết cho d
2n+1 chia hết cho d
=)2n2+2n chia hết cho d
2n+1 chia hết cho d
=) ( 2n2+2n) - (2n2+n)chia hết cho d
=)n chia hết cho d
Lại có 2n+1 chia hết cho d
=) 2n chia hết cho d
2n +1 chia hết cho d
=) (2n +1 ) - (2n ) chia hết cho d
=) 1 chia hết cho d
=) d thuộc Ư ( 1)
=) d=1
Vậy n.(n+1) /2 và 2n + 1 là hai số nguyên tố cùng nhau
a, 2n + 5 và 3n + 7
Gọi ƯCLN ( 2n+5, 3n + 7)=d
=) 2n+5 chia hết cho d , =) 3. (2n+5) chia hết cho d
3n +7 chia hết cho d , 2. ( 3n+7) chia hết cho d
=) 6n+15 chia hết cho d
6n+14 chia hết cho d
=)(6n+15 )- (6n+14) chia hết cho d
=) 1 chia hết cho d
=) d thuộc ƯC ( 1 )
=) ƯCLN (2n+5,3n+7)=1
Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
Câu b , c tượng tự bạn nhé !
a) Gọi (2n+2,8n+7) là d \(\left(d\inℕ^∗\right)\)
Vì (2n+2,8n+7) là d
\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\8n+7⋮d\end{cases}}\)
\(\Rightarrow\)(2n+2)-(8n+7)\(⋮\)d
\(\Rightarrow\)(8n+8)-(8n+7)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)(2n+2,8n+7)=1 nên tử số và mẫu số là số nguyên tố cùng nhau
\(\Rightarrow\frac{2n+2}{8n+7}\)là phân số tối giản
Vậy \(\frac{2n+2}{8n+7}\)là phân số tối giản.
Các phần sau tương tự.
gọi d là ƯC(5n + 4; 5n + 11)
\(\Rightarrow\hept{\begin{cases}5n+4⋮d\\5n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+12⋮d\\15n+11⋮d\end{cases}}}\)
\(\Rightarrow15n+12-15n-11⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{\pm1\right\}\)
\(\Rightarrow\frac{5n+4}{5n+11}\) là phân số tối giản
a)n+3\(⋮\)n
n\(⋮\)n
n+3-n\(⋮\)n
3\(⋮\)n
\(\Rightarrow\)n={1,3}
b)7n+8\(⋮\)n
7n\(⋮\)n
7n+8-7n\(⋮\)n
8\(⋮\)n
\(\Rightarrow\)n={1,2,4,8}
c)35-12n\(⋮\)n
12n\(⋮\)n
35-12n-12n\(⋮\)n
35\(⋮\)n
\(\Rightarrow\)n={1,5,7,35}
d)n+8\(⋮\)n+3
n+3\(⋮\)n+3
n+8-(n+3)\(⋮\)n+3
n+8-n-3\(⋮\)n+3
5\(⋮\)n+3
\(\Rightarrow\)n+3={1,5}
\(\Rightarrow\)n={-1,2}
vi x\(\in\)N nen x =2
d)16-3n\(⋮\)n+4
3(n+4)\(⋮\)n+4
16-3n-3(n+4)\(⋮\)n+4
16-3n-3n-12\(⋮\)n+4
4\(⋮\)n+4
\(\Rightarrow\)n+4={1,4}
voi n+4=1\(\Rightarrow\)n=khong tim duoc
voi n+4=4\(\Rightarrow\)n=0
vay n=0
a) n + 3 chia hết cho n
(n chia hết cho n + 3 ) chia hết cho n
=> 3 chia hết cho n
=> n E Ư(3)={ 1;3}
Các câu còn lại bạn tự giải nhé
a ) 2n + 5 và 3n + 7 nguyên tố cùng nhau
Gọi ƯCLN ( 2n + 5 ; 3n + 7 ) = d
⇒ 2n + 5 ⋮ d và 3n + 7 ⋮ d
⇒ 3.( 2n + 5) ⋮ d ⇒ 6n + 15 ⋮ d
2.( 3n + 7) ⋮ d 6n + 14 ⋮ d
⇒ ( 6n + 15 ) - ( 6n + 14 ) ⋮ d
⇒ 1 ⋮ d ⇒ d ∈ Ư(1) ⇒ d=1
Vì ƯCLN ( 2n + 5 ; 3n + 7 ) = 1
nên 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau
d) \(\dfrac{n\left(n+1\right)}{2}\) và 2n + 1 nguyên tố cùng nhau
Gọi ƯCLN ( \(\dfrac{n\left(n+1\right)}{2}\)và 2n + 1 ) = d
⇒ \(\dfrac{n\left(n+1\right)}{2}\) ⋮ d và 2n + 1 ⋮ d
⇒4. \(\dfrac{n\left(n+1\right)}{2}\) ⋮ d ⇒ 2n ( n + 1) ⋮ d
n ( 2n + 1) ⋮ d ⇒ 2n2 + n ⋮ d
⇒ 2n2 + 2n ⋮ d
2n2 + n ⋮ d
⇒ ( 2n2 + 2n ) - ( 2n2 + n ) ⋮ d
⇒ n ⋮ d
Vì n ⋮ d ⇒ 2n ⋮ d mà 2n +1 ⋮ d nên 1 ⋮ d
⇒ d = 1
Vì ƯCLN ( \(\dfrac{n\left(n+1\right)}{2}\)và 2n + 1 =1 nên \(\dfrac{n\left(n+1\right)}{2}\)và 2n + 1 là hai số nguyên tố cùng nhau
c,Để phân số trên là phân số tối giản thì (3n+2;5n+3) = 1
Gọi \(d\inƯCLN\left(3n+2;5n+3\right)\)
Ta có:\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\) \(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(3n+2;5n+3\right)=1\)
Vậy phân số\(\dfrac{3n+2}{5n+3}\) là phân số tối giản
a,để phân số trên tối giản thì (n+1;2n+3) = 1
Gọi \(d\inƯCLN(n+1;2n+3)\) \(\left(d\in N\right)\)
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(n+1;2n+3\right)=1\)
Vậy phân số \(\dfrac{n+1}{2n+3}\) là một phân số tối giản